Metamath Proof Explorer


Theorem iscyg2

Description: A cyclic group is a group which contains a generator. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses iscyg.1 𝐵 = ( Base ‘ 𝐺 )
iscyg.2 · = ( .g𝐺 )
iscyg3.e 𝐸 = { 𝑥𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 }
Assertion iscyg2 ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐸 ≠ ∅ ) )

Proof

Step Hyp Ref Expression
1 iscyg.1 𝐵 = ( Base ‘ 𝐺 )
2 iscyg.2 · = ( .g𝐺 )
3 iscyg3.e 𝐸 = { 𝑥𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 }
4 1 2 iscyg ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ ∃ 𝑥𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ) )
5 3 neeq1i ( 𝐸 ≠ ∅ ↔ { 𝑥𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } ≠ ∅ )
6 rabn0 ( { 𝑥𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } ≠ ∅ ↔ ∃ 𝑥𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 )
7 5 6 bitri ( 𝐸 ≠ ∅ ↔ ∃ 𝑥𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 )
8 7 anbi2i ( ( 𝐺 ∈ Grp ∧ 𝐸 ≠ ∅ ) ↔ ( 𝐺 ∈ Grp ∧ ∃ 𝑥𝐵 ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ) )
9 4 8 bitr4i ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐸 ≠ ∅ ) )