| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cygzn.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | cygzn.n | ⊢ 𝑁  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) | 
						
							| 3 |  | cygzn.y | ⊢ 𝑌  =  ( ℤ/nℤ ‘ 𝑁 ) | 
						
							| 4 |  | cygzn.m | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 5 |  | cygzn.l | ⊢ 𝐿  =  ( ℤRHom ‘ 𝑌 ) | 
						
							| 6 |  | cygzn.e | ⊢ 𝐸  =  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑥 ) )  =  𝐵 } | 
						
							| 7 |  | cygzn.g | ⊢ ( 𝜑  →  𝐺  ∈  CycGrp ) | 
						
							| 8 |  | cygzn.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐸 ) | 
						
							| 9 |  | cygzn.f | ⊢ 𝐹  =  ran  ( 𝑚  ∈  ℤ  ↦  〈 ( 𝐿 ‘ 𝑚 ) ,  ( 𝑚  ·  𝑋 ) 〉 ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 11 |  | eqid | ⊢ ( +g ‘ 𝑌 )  =  ( +g ‘ 𝑌 ) | 
						
							| 12 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 13 |  | hashcl | ⊢ ( 𝐵  ∈  Fin  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝜑  ∧  𝐵  ∈  Fin )  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 15 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 16 | 15 | a1i | ⊢ ( ( 𝜑  ∧  ¬  𝐵  ∈  Fin )  →  0  ∈  ℕ0 ) | 
						
							| 17 | 14 16 | ifclda | ⊢ ( 𝜑  →  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 )  ∈  ℕ0 ) | 
						
							| 18 | 2 17 | eqeltrid | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 19 | 3 | zncrng | ⊢ ( 𝑁  ∈  ℕ0  →  𝑌  ∈  CRing ) | 
						
							| 20 |  | crngring | ⊢ ( 𝑌  ∈  CRing  →  𝑌  ∈  Ring ) | 
						
							| 21 |  | ringgrp | ⊢ ( 𝑌  ∈  Ring  →  𝑌  ∈  Grp ) | 
						
							| 22 | 18 19 20 21 | 4syl | ⊢ ( 𝜑  →  𝑌  ∈  Grp ) | 
						
							| 23 |  | cyggrp | ⊢ ( 𝐺  ∈  CycGrp  →  𝐺  ∈  Grp ) | 
						
							| 24 | 7 23 | syl | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 25 | 1 2 3 4 5 6 7 8 9 | cygznlem2a | ⊢ ( 𝜑  →  𝐹 : ( Base ‘ 𝑌 ) ⟶ 𝐵 ) | 
						
							| 26 | 3 10 5 | znzrhfo | ⊢ ( 𝑁  ∈  ℕ0  →  𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) ) | 
						
							| 27 | 18 26 | syl | ⊢ ( 𝜑  →  𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) ) | 
						
							| 28 |  | foelrn | ⊢ ( ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 )  ∧  𝑎  ∈  ( Base ‘ 𝑌 ) )  →  ∃ 𝑖  ∈  ℤ 𝑎  =  ( 𝐿 ‘ 𝑖 ) ) | 
						
							| 29 | 27 28 | sylan | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 ) )  →  ∃ 𝑖  ∈  ℤ 𝑎  =  ( 𝐿 ‘ 𝑖 ) ) | 
						
							| 30 |  | foelrn | ⊢ ( ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) )  →  ∃ 𝑗  ∈  ℤ 𝑏  =  ( 𝐿 ‘ 𝑗 ) ) | 
						
							| 31 | 27 30 | sylan | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) )  →  ∃ 𝑗  ∈  ℤ 𝑏  =  ( 𝐿 ‘ 𝑗 ) ) | 
						
							| 32 | 29 31 | anim12dan | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) ) )  →  ( ∃ 𝑖  ∈  ℤ 𝑎  =  ( 𝐿 ‘ 𝑖 )  ∧  ∃ 𝑗  ∈  ℤ 𝑏  =  ( 𝐿 ‘ 𝑗 ) ) ) | 
						
							| 33 |  | reeanv | ⊢ ( ∃ 𝑖  ∈  ℤ ∃ 𝑗  ∈  ℤ ( 𝑎  =  ( 𝐿 ‘ 𝑖 )  ∧  𝑏  =  ( 𝐿 ‘ 𝑗 ) )  ↔  ( ∃ 𝑖  ∈  ℤ 𝑎  =  ( 𝐿 ‘ 𝑖 )  ∧  ∃ 𝑗  ∈  ℤ 𝑏  =  ( 𝐿 ‘ 𝑗 ) ) ) | 
						
							| 34 | 24 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ ) )  →  𝐺  ∈  Grp ) | 
						
							| 35 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ ) )  →  𝑖  ∈  ℤ ) | 
						
							| 36 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ ) )  →  𝑗  ∈  ℤ ) | 
						
							| 37 | 1 4 6 | iscyggen | ⊢ ( 𝑋  ∈  𝐸  ↔  ( 𝑋  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  =  𝐵 ) ) | 
						
							| 38 | 37 | simplbi | ⊢ ( 𝑋  ∈  𝐸  →  𝑋  ∈  𝐵 ) | 
						
							| 39 | 8 38 | syl | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 41 | 1 4 12 | mulgdir | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ  ∧  𝑋  ∈  𝐵 ) )  →  ( ( 𝑖  +  𝑗 )  ·  𝑋 )  =  ( ( 𝑖  ·  𝑋 ) ( +g ‘ 𝐺 ) ( 𝑗  ·  𝑋 ) ) ) | 
						
							| 42 | 34 35 36 40 41 | syl13anc | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ ) )  →  ( ( 𝑖  +  𝑗 )  ·  𝑋 )  =  ( ( 𝑖  ·  𝑋 ) ( +g ‘ 𝐺 ) ( 𝑗  ·  𝑋 ) ) ) | 
						
							| 43 | 18 19 | syl | ⊢ ( 𝜑  →  𝑌  ∈  CRing ) | 
						
							| 44 | 5 | zrhrhm | ⊢ ( 𝑌  ∈  Ring  →  𝐿  ∈  ( ℤring  RingHom  𝑌 ) ) | 
						
							| 45 |  | rhmghm | ⊢ ( 𝐿  ∈  ( ℤring  RingHom  𝑌 )  →  𝐿  ∈  ( ℤring  GrpHom  𝑌 ) ) | 
						
							| 46 | 43 20 44 45 | 4syl | ⊢ ( 𝜑  →  𝐿  ∈  ( ℤring  GrpHom  𝑌 ) ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ ) )  →  𝐿  ∈  ( ℤring  GrpHom  𝑌 ) ) | 
						
							| 48 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 49 |  | zringplusg | ⊢  +   =  ( +g ‘ ℤring ) | 
						
							| 50 | 48 49 11 | ghmlin | ⊢ ( ( 𝐿  ∈  ( ℤring  GrpHom  𝑌 )  ∧  𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ )  →  ( 𝐿 ‘ ( 𝑖  +  𝑗 ) )  =  ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) | 
						
							| 51 | 47 35 36 50 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ ) )  →  ( 𝐿 ‘ ( 𝑖  +  𝑗 ) )  =  ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) | 
						
							| 52 | 51 | fveq2d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ ) )  →  ( 𝐹 ‘ ( 𝐿 ‘ ( 𝑖  +  𝑗 ) ) )  =  ( 𝐹 ‘ ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) ) | 
						
							| 53 |  | zaddcl | ⊢ ( ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ )  →  ( 𝑖  +  𝑗 )  ∈  ℤ ) | 
						
							| 54 | 1 2 3 4 5 6 7 8 9 | cygznlem2 | ⊢ ( ( 𝜑  ∧  ( 𝑖  +  𝑗 )  ∈  ℤ )  →  ( 𝐹 ‘ ( 𝐿 ‘ ( 𝑖  +  𝑗 ) ) )  =  ( ( 𝑖  +  𝑗 )  ·  𝑋 ) ) | 
						
							| 55 | 53 54 | sylan2 | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ ) )  →  ( 𝐹 ‘ ( 𝐿 ‘ ( 𝑖  +  𝑗 ) ) )  =  ( ( 𝑖  +  𝑗 )  ·  𝑋 ) ) | 
						
							| 56 | 52 55 | eqtr3d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ ) )  →  ( 𝐹 ‘ ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) )  =  ( ( 𝑖  +  𝑗 )  ·  𝑋 ) ) | 
						
							| 57 | 1 2 3 4 5 6 7 8 9 | cygznlem2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ℤ )  →  ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) )  =  ( 𝑖  ·  𝑋 ) ) | 
						
							| 58 | 57 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ ) )  →  ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) )  =  ( 𝑖  ·  𝑋 ) ) | 
						
							| 59 | 1 2 3 4 5 6 7 8 9 | cygznlem2 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ℤ )  →  ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) )  =  ( 𝑗  ·  𝑋 ) ) | 
						
							| 60 | 59 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ ) )  →  ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) )  =  ( 𝑗  ·  𝑋 ) ) | 
						
							| 61 | 58 60 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ ) )  →  ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) )  =  ( ( 𝑖  ·  𝑋 ) ( +g ‘ 𝐺 ) ( 𝑗  ·  𝑋 ) ) ) | 
						
							| 62 | 42 56 61 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ ) )  →  ( 𝐹 ‘ ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) )  =  ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) ) | 
						
							| 63 |  | oveq12 | ⊢ ( ( 𝑎  =  ( 𝐿 ‘ 𝑖 )  ∧  𝑏  =  ( 𝐿 ‘ 𝑗 ) )  →  ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 )  =  ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) | 
						
							| 64 | 63 | fveq2d | ⊢ ( ( 𝑎  =  ( 𝐿 ‘ 𝑖 )  ∧  𝑏  =  ( 𝐿 ‘ 𝑗 ) )  →  ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) )  =  ( 𝐹 ‘ ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) ) | 
						
							| 65 |  | fveq2 | ⊢ ( 𝑎  =  ( 𝐿 ‘ 𝑖 )  →  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) ) | 
						
							| 66 |  | fveq2 | ⊢ ( 𝑏  =  ( 𝐿 ‘ 𝑗 )  →  ( 𝐹 ‘ 𝑏 )  =  ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) | 
						
							| 67 | 65 66 | oveqan12d | ⊢ ( ( 𝑎  =  ( 𝐿 ‘ 𝑖 )  ∧  𝑏  =  ( 𝐿 ‘ 𝑗 ) )  →  ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) )  =  ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) ) | 
						
							| 68 | 64 67 | eqeq12d | ⊢ ( ( 𝑎  =  ( 𝐿 ‘ 𝑖 )  ∧  𝑏  =  ( 𝐿 ‘ 𝑗 ) )  →  ( ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) )  =  ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) )  ↔  ( 𝐹 ‘ ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) )  =  ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) ) ) | 
						
							| 69 | 62 68 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ ) )  →  ( ( 𝑎  =  ( 𝐿 ‘ 𝑖 )  ∧  𝑏  =  ( 𝐿 ‘ 𝑗 ) )  →  ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) )  =  ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ) ) | 
						
							| 70 | 69 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑖  ∈  ℤ ∃ 𝑗  ∈  ℤ ( 𝑎  =  ( 𝐿 ‘ 𝑖 )  ∧  𝑏  =  ( 𝐿 ‘ 𝑗 ) )  →  ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) )  =  ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ) ) | 
						
							| 71 | 33 70 | biimtrrid | ⊢ ( 𝜑  →  ( ( ∃ 𝑖  ∈  ℤ 𝑎  =  ( 𝐿 ‘ 𝑖 )  ∧  ∃ 𝑗  ∈  ℤ 𝑏  =  ( 𝐿 ‘ 𝑗 ) )  →  ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) )  =  ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ) ) | 
						
							| 72 | 71 | imp | ⊢ ( ( 𝜑  ∧  ( ∃ 𝑖  ∈  ℤ 𝑎  =  ( 𝐿 ‘ 𝑖 )  ∧  ∃ 𝑗  ∈  ℤ 𝑏  =  ( 𝐿 ‘ 𝑗 ) ) )  →  ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) )  =  ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 73 | 32 72 | syldan | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) )  =  ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 74 | 10 1 11 12 22 24 25 73 | isghmd | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑌  GrpHom  𝐺 ) ) | 
						
							| 75 | 58 60 | eqeq12d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ ) )  →  ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) )  =  ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) )  ↔  ( 𝑖  ·  𝑋 )  =  ( 𝑗  ·  𝑋 ) ) ) | 
						
							| 76 | 1 2 3 4 5 6 7 8 | cygznlem1 | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ ) )  →  ( ( 𝐿 ‘ 𝑖 )  =  ( 𝐿 ‘ 𝑗 )  ↔  ( 𝑖  ·  𝑋 )  =  ( 𝑗  ·  𝑋 ) ) ) | 
						
							| 77 | 75 76 | bitr4d | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ ) )  →  ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) )  =  ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) )  ↔  ( 𝐿 ‘ 𝑖 )  =  ( 𝐿 ‘ 𝑗 ) ) ) | 
						
							| 78 | 77 | biimpd | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ ) )  →  ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) )  =  ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) )  →  ( 𝐿 ‘ 𝑖 )  =  ( 𝐿 ‘ 𝑗 ) ) ) | 
						
							| 79 | 65 66 | eqeqan12d | ⊢ ( ( 𝑎  =  ( 𝐿 ‘ 𝑖 )  ∧  𝑏  =  ( 𝐿 ‘ 𝑗 ) )  →  ( ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 )  ↔  ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) )  =  ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) ) | 
						
							| 80 |  | eqeq12 | ⊢ ( ( 𝑎  =  ( 𝐿 ‘ 𝑖 )  ∧  𝑏  =  ( 𝐿 ‘ 𝑗 ) )  →  ( 𝑎  =  𝑏  ↔  ( 𝐿 ‘ 𝑖 )  =  ( 𝐿 ‘ 𝑗 ) ) ) | 
						
							| 81 | 79 80 | imbi12d | ⊢ ( ( 𝑎  =  ( 𝐿 ‘ 𝑖 )  ∧  𝑏  =  ( 𝐿 ‘ 𝑗 ) )  →  ( ( ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 )  →  𝑎  =  𝑏 )  ↔  ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) )  =  ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) )  →  ( 𝐿 ‘ 𝑖 )  =  ( 𝐿 ‘ 𝑗 ) ) ) ) | 
						
							| 82 | 78 81 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  ( 𝑖  ∈  ℤ  ∧  𝑗  ∈  ℤ ) )  →  ( ( 𝑎  =  ( 𝐿 ‘ 𝑖 )  ∧  𝑏  =  ( 𝐿 ‘ 𝑗 ) )  →  ( ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 )  →  𝑎  =  𝑏 ) ) ) | 
						
							| 83 | 82 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑖  ∈  ℤ ∃ 𝑗  ∈  ℤ ( 𝑎  =  ( 𝐿 ‘ 𝑖 )  ∧  𝑏  =  ( 𝐿 ‘ 𝑗 ) )  →  ( ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 )  →  𝑎  =  𝑏 ) ) ) | 
						
							| 84 | 33 83 | biimtrrid | ⊢ ( 𝜑  →  ( ( ∃ 𝑖  ∈  ℤ 𝑎  =  ( 𝐿 ‘ 𝑖 )  ∧  ∃ 𝑗  ∈  ℤ 𝑏  =  ( 𝐿 ‘ 𝑗 ) )  →  ( ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 )  →  𝑎  =  𝑏 ) ) ) | 
						
							| 85 | 84 | imp | ⊢ ( ( 𝜑  ∧  ( ∃ 𝑖  ∈  ℤ 𝑎  =  ( 𝐿 ‘ 𝑖 )  ∧  ∃ 𝑗  ∈  ℤ 𝑏  =  ( 𝐿 ‘ 𝑗 ) ) )  →  ( ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 )  →  𝑎  =  𝑏 ) ) | 
						
							| 86 | 32 85 | syldan | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) ) )  →  ( ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 )  →  𝑎  =  𝑏 ) ) | 
						
							| 87 | 86 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ( Base ‘ 𝑌 ) ∀ 𝑏  ∈  ( Base ‘ 𝑌 ) ( ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 )  →  𝑎  =  𝑏 ) ) | 
						
							| 88 |  | dff13 | ⊢ ( 𝐹 : ( Base ‘ 𝑌 ) –1-1→ 𝐵  ↔  ( 𝐹 : ( Base ‘ 𝑌 ) ⟶ 𝐵  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝑌 ) ∀ 𝑏  ∈  ( Base ‘ 𝑌 ) ( ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑏 )  →  𝑎  =  𝑏 ) ) ) | 
						
							| 89 | 25 87 88 | sylanbrc | ⊢ ( 𝜑  →  𝐹 : ( Base ‘ 𝑌 ) –1-1→ 𝐵 ) | 
						
							| 90 | 1 4 6 | iscyggen2 | ⊢ ( 𝐺  ∈  Grp  →  ( 𝑋  ∈  𝐸  ↔  ( 𝑋  ∈  𝐵  ∧  ∀ 𝑧  ∈  𝐵 ∃ 𝑛  ∈  ℤ 𝑧  =  ( 𝑛  ·  𝑋 ) ) ) ) | 
						
							| 91 | 24 90 | syl | ⊢ ( 𝜑  →  ( 𝑋  ∈  𝐸  ↔  ( 𝑋  ∈  𝐵  ∧  ∀ 𝑧  ∈  𝐵 ∃ 𝑛  ∈  ℤ 𝑧  =  ( 𝑛  ·  𝑋 ) ) ) ) | 
						
							| 92 | 8 91 | mpbid | ⊢ ( 𝜑  →  ( 𝑋  ∈  𝐵  ∧  ∀ 𝑧  ∈  𝐵 ∃ 𝑛  ∈  ℤ 𝑧  =  ( 𝑛  ·  𝑋 ) ) ) | 
						
							| 93 | 92 | simprd | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝐵 ∃ 𝑛  ∈  ℤ 𝑧  =  ( 𝑛  ·  𝑋 ) ) | 
						
							| 94 |  | oveq1 | ⊢ ( 𝑛  =  𝑗  →  ( 𝑛  ·  𝑋 )  =  ( 𝑗  ·  𝑋 ) ) | 
						
							| 95 | 94 | eqeq2d | ⊢ ( 𝑛  =  𝑗  →  ( 𝑧  =  ( 𝑛  ·  𝑋 )  ↔  𝑧  =  ( 𝑗  ·  𝑋 ) ) ) | 
						
							| 96 | 95 | cbvrexvw | ⊢ ( ∃ 𝑛  ∈  ℤ 𝑧  =  ( 𝑛  ·  𝑋 )  ↔  ∃ 𝑗  ∈  ℤ 𝑧  =  ( 𝑗  ·  𝑋 ) ) | 
						
							| 97 | 27 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) ) | 
						
							| 98 |  | fof | ⊢ ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 )  →  𝐿 : ℤ ⟶ ( Base ‘ 𝑌 ) ) | 
						
							| 99 | 97 98 | syl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  𝐿 : ℤ ⟶ ( Base ‘ 𝑌 ) ) | 
						
							| 100 | 99 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  𝑗  ∈  ℤ )  →  ( 𝐿 ‘ 𝑗 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 101 | 59 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  𝑗  ∈  ℤ )  →  ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) )  =  ( 𝑗  ·  𝑋 ) ) | 
						
							| 102 | 101 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  𝑗  ∈  ℤ )  →  ( 𝑗  ·  𝑋 )  =  ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) | 
						
							| 103 |  | fveq2 | ⊢ ( 𝑎  =  ( 𝐿 ‘ 𝑗 )  →  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) | 
						
							| 104 | 103 | rspceeqv | ⊢ ( ( ( 𝐿 ‘ 𝑗 )  ∈  ( Base ‘ 𝑌 )  ∧  ( 𝑗  ·  𝑋 )  =  ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) )  →  ∃ 𝑎  ∈  ( Base ‘ 𝑌 ) ( 𝑗  ·  𝑋 )  =  ( 𝐹 ‘ 𝑎 ) ) | 
						
							| 105 | 100 102 104 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  𝑗  ∈  ℤ )  →  ∃ 𝑎  ∈  ( Base ‘ 𝑌 ) ( 𝑗  ·  𝑋 )  =  ( 𝐹 ‘ 𝑎 ) ) | 
						
							| 106 |  | eqeq1 | ⊢ ( 𝑧  =  ( 𝑗  ·  𝑋 )  →  ( 𝑧  =  ( 𝐹 ‘ 𝑎 )  ↔  ( 𝑗  ·  𝑋 )  =  ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 107 | 106 | rexbidv | ⊢ ( 𝑧  =  ( 𝑗  ·  𝑋 )  →  ( ∃ 𝑎  ∈  ( Base ‘ 𝑌 ) 𝑧  =  ( 𝐹 ‘ 𝑎 )  ↔  ∃ 𝑎  ∈  ( Base ‘ 𝑌 ) ( 𝑗  ·  𝑋 )  =  ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 108 | 105 107 | syl5ibrcom | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  𝑗  ∈  ℤ )  →  ( 𝑧  =  ( 𝑗  ·  𝑋 )  →  ∃ 𝑎  ∈  ( Base ‘ 𝑌 ) 𝑧  =  ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 109 | 108 | rexlimdva | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  ( ∃ 𝑗  ∈  ℤ 𝑧  =  ( 𝑗  ·  𝑋 )  →  ∃ 𝑎  ∈  ( Base ‘ 𝑌 ) 𝑧  =  ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 110 | 96 109 | biimtrid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  ( ∃ 𝑛  ∈  ℤ 𝑧  =  ( 𝑛  ·  𝑋 )  →  ∃ 𝑎  ∈  ( Base ‘ 𝑌 ) 𝑧  =  ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 111 | 110 | ralimdva | ⊢ ( 𝜑  →  ( ∀ 𝑧  ∈  𝐵 ∃ 𝑛  ∈  ℤ 𝑧  =  ( 𝑛  ·  𝑋 )  →  ∀ 𝑧  ∈  𝐵 ∃ 𝑎  ∈  ( Base ‘ 𝑌 ) 𝑧  =  ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 112 | 93 111 | mpd | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝐵 ∃ 𝑎  ∈  ( Base ‘ 𝑌 ) 𝑧  =  ( 𝐹 ‘ 𝑎 ) ) | 
						
							| 113 |  | dffo3 | ⊢ ( 𝐹 : ( Base ‘ 𝑌 ) –onto→ 𝐵  ↔  ( 𝐹 : ( Base ‘ 𝑌 ) ⟶ 𝐵  ∧  ∀ 𝑧  ∈  𝐵 ∃ 𝑎  ∈  ( Base ‘ 𝑌 ) 𝑧  =  ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 114 | 25 112 113 | sylanbrc | ⊢ ( 𝜑  →  𝐹 : ( Base ‘ 𝑌 ) –onto→ 𝐵 ) | 
						
							| 115 |  | df-f1o | ⊢ ( 𝐹 : ( Base ‘ 𝑌 ) –1-1-onto→ 𝐵  ↔  ( 𝐹 : ( Base ‘ 𝑌 ) –1-1→ 𝐵  ∧  𝐹 : ( Base ‘ 𝑌 ) –onto→ 𝐵 ) ) | 
						
							| 116 | 89 114 115 | sylanbrc | ⊢ ( 𝜑  →  𝐹 : ( Base ‘ 𝑌 ) –1-1-onto→ 𝐵 ) | 
						
							| 117 | 10 1 | isgim | ⊢ ( 𝐹  ∈  ( 𝑌  GrpIso  𝐺 )  ↔  ( 𝐹  ∈  ( 𝑌  GrpHom  𝐺 )  ∧  𝐹 : ( Base ‘ 𝑌 ) –1-1-onto→ 𝐵 ) ) | 
						
							| 118 | 74 116 117 | sylanbrc | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑌  GrpIso  𝐺 ) ) | 
						
							| 119 |  | brgici | ⊢ ( 𝐹  ∈  ( 𝑌  GrpIso  𝐺 )  →  𝑌  ≃𝑔  𝐺 ) | 
						
							| 120 |  | gicsym | ⊢ ( 𝑌  ≃𝑔  𝐺  →  𝐺  ≃𝑔  𝑌 ) | 
						
							| 121 | 118 119 120 | 3syl | ⊢ ( 𝜑  →  𝐺  ≃𝑔  𝑌 ) |