| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cygzn.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
cygzn.n |
⊢ 𝑁 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) |
| 3 |
|
cygzn.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) |
| 4 |
|
cygzn.m |
⊢ · = ( .g ‘ 𝐺 ) |
| 5 |
|
cygzn.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) |
| 6 |
|
cygzn.e |
⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } |
| 7 |
|
cygzn.g |
⊢ ( 𝜑 → 𝐺 ∈ CycGrp ) |
| 8 |
|
cygzn.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐸 ) |
| 9 |
|
cygzn.f |
⊢ 𝐹 = ran ( 𝑚 ∈ ℤ ↦ 〈 ( 𝐿 ‘ 𝑚 ) , ( 𝑚 · 𝑋 ) 〉 ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
| 11 |
|
eqid |
⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) |
| 12 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 13 |
|
hashcl |
⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 15 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 16 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ∈ Fin ) → 0 ∈ ℕ0 ) |
| 17 |
14 16
|
ifclda |
⊢ ( 𝜑 → if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ∈ ℕ0 ) |
| 18 |
2 17
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 19 |
3
|
zncrng |
⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ CRing ) |
| 20 |
|
crngring |
⊢ ( 𝑌 ∈ CRing → 𝑌 ∈ Ring ) |
| 21 |
|
ringgrp |
⊢ ( 𝑌 ∈ Ring → 𝑌 ∈ Grp ) |
| 22 |
18 19 20 21
|
4syl |
⊢ ( 𝜑 → 𝑌 ∈ Grp ) |
| 23 |
|
cyggrp |
⊢ ( 𝐺 ∈ CycGrp → 𝐺 ∈ Grp ) |
| 24 |
7 23
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 25 |
1 2 3 4 5 6 7 8 9
|
cygznlem2a |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑌 ) ⟶ 𝐵 ) |
| 26 |
3 10 5
|
znzrhfo |
⊢ ( 𝑁 ∈ ℕ0 → 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) ) |
| 27 |
18 26
|
syl |
⊢ ( 𝜑 → 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) ) |
| 28 |
|
foelrn |
⊢ ( ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿 ‘ 𝑖 ) ) |
| 29 |
27 28
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿 ‘ 𝑖 ) ) |
| 30 |
|
foelrn |
⊢ ( ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) |
| 31 |
27 30
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) |
| 32 |
29 31
|
anim12dan |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → ( ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) ) |
| 33 |
|
reeanv |
⊢ ( ∃ 𝑖 ∈ ℤ ∃ 𝑗 ∈ ℤ ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) ↔ ( ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) ) |
| 34 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → 𝐺 ∈ Grp ) |
| 35 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → 𝑖 ∈ ℤ ) |
| 36 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → 𝑗 ∈ ℤ ) |
| 37 |
1 4 6
|
iscyggen |
⊢ ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) ) |
| 38 |
37
|
simplbi |
⊢ ( 𝑋 ∈ 𝐸 → 𝑋 ∈ 𝐵 ) |
| 39 |
8 38
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → 𝑋 ∈ 𝐵 ) |
| 41 |
1 4 12
|
mulgdir |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑖 + 𝑗 ) · 𝑋 ) = ( ( 𝑖 · 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑗 · 𝑋 ) ) ) |
| 42 |
34 35 36 40 41
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝑖 + 𝑗 ) · 𝑋 ) = ( ( 𝑖 · 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑗 · 𝑋 ) ) ) |
| 43 |
18 19
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ CRing ) |
| 44 |
5
|
zrhrhm |
⊢ ( 𝑌 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑌 ) ) |
| 45 |
|
rhmghm |
⊢ ( 𝐿 ∈ ( ℤring RingHom 𝑌 ) → 𝐿 ∈ ( ℤring GrpHom 𝑌 ) ) |
| 46 |
43 20 44 45
|
4syl |
⊢ ( 𝜑 → 𝐿 ∈ ( ℤring GrpHom 𝑌 ) ) |
| 47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → 𝐿 ∈ ( ℤring GrpHom 𝑌 ) ) |
| 48 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 49 |
|
zringplusg |
⊢ + = ( +g ‘ ℤring ) |
| 50 |
48 49 11
|
ghmlin |
⊢ ( ( 𝐿 ∈ ( ℤring GrpHom 𝑌 ) ∧ 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝐿 ‘ ( 𝑖 + 𝑗 ) ) = ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) |
| 51 |
47 35 36 50
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝐿 ‘ ( 𝑖 + 𝑗 ) ) = ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) |
| 52 |
51
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝐹 ‘ ( 𝐿 ‘ ( 𝑖 + 𝑗 ) ) ) = ( 𝐹 ‘ ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) ) |
| 53 |
|
zaddcl |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝑖 + 𝑗 ) ∈ ℤ ) |
| 54 |
1 2 3 4 5 6 7 8 9
|
cygznlem2 |
⊢ ( ( 𝜑 ∧ ( 𝑖 + 𝑗 ) ∈ ℤ ) → ( 𝐹 ‘ ( 𝐿 ‘ ( 𝑖 + 𝑗 ) ) ) = ( ( 𝑖 + 𝑗 ) · 𝑋 ) ) |
| 55 |
53 54
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝐹 ‘ ( 𝐿 ‘ ( 𝑖 + 𝑗 ) ) ) = ( ( 𝑖 + 𝑗 ) · 𝑋 ) ) |
| 56 |
52 55
|
eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝐹 ‘ ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) = ( ( 𝑖 + 𝑗 ) · 𝑋 ) ) |
| 57 |
1 2 3 4 5 6 7 8 9
|
cygznlem2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℤ ) → ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) = ( 𝑖 · 𝑋 ) ) |
| 58 |
57
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) = ( 𝑖 · 𝑋 ) ) |
| 59 |
1 2 3 4 5 6 7 8 9
|
cygznlem2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℤ ) → ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) = ( 𝑗 · 𝑋 ) ) |
| 60 |
59
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) = ( 𝑗 · 𝑋 ) ) |
| 61 |
58 60
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) = ( ( 𝑖 · 𝑋 ) ( +g ‘ 𝐺 ) ( 𝑗 · 𝑋 ) ) ) |
| 62 |
42 56 61
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( 𝐹 ‘ ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) = ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) ) |
| 63 |
|
oveq12 |
⊢ ( ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) = ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) |
| 64 |
63
|
fveq2d |
⊢ ( ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ) = ( 𝐹 ‘ ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) ) |
| 65 |
|
fveq2 |
⊢ ( 𝑎 = ( 𝐿 ‘ 𝑖 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) ) |
| 66 |
|
fveq2 |
⊢ ( 𝑏 = ( 𝐿 ‘ 𝑗 ) → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) |
| 67 |
65 66
|
oveqan12d |
⊢ ( ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) ) |
| 68 |
64 67
|
eqeq12d |
⊢ ( ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ↔ ( 𝐹 ‘ ( ( 𝐿 ‘ 𝑖 ) ( +g ‘ 𝑌 ) ( 𝐿 ‘ 𝑗 ) ) ) = ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) ) ) |
| 69 |
62 68
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 70 |
69
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ℤ ∃ 𝑗 ∈ ℤ ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 71 |
33 70
|
biimtrrid |
⊢ ( 𝜑 → ( ( ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 72 |
71
|
imp |
⊢ ( ( 𝜑 ∧ ( ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 73 |
32 72
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 74 |
10 1 11 12 22 24 25 73
|
isghmd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑌 GrpHom 𝐺 ) ) |
| 75 |
58 60
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ↔ ( 𝑖 · 𝑋 ) = ( 𝑗 · 𝑋 ) ) ) |
| 76 |
1 2 3 4 5 6 7 8
|
cygznlem1 |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ 𝑗 ) ↔ ( 𝑖 · 𝑋 ) = ( 𝑗 · 𝑋 ) ) ) |
| 77 |
75 76
|
bitr4d |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ↔ ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ 𝑗 ) ) ) |
| 78 |
77
|
biimpd |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) → ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ 𝑗 ) ) ) |
| 79 |
65 66
|
eqeqan12d |
⊢ ( ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ↔ ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) ) |
| 80 |
|
eqeq12 |
⊢ ( ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( 𝑎 = 𝑏 ↔ ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ 𝑗 ) ) ) |
| 81 |
79 80
|
imbi12d |
⊢ ( ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ↔ ( ( 𝐹 ‘ ( 𝐿 ‘ 𝑖 ) ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) → ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ 𝑗 ) ) ) ) |
| 82 |
78 81
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ ) ) → ( ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
| 83 |
82
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑖 ∈ ℤ ∃ 𝑗 ∈ ℤ ( 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
| 84 |
33 83
|
biimtrrid |
⊢ ( 𝜑 → ( ( ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
| 85 |
84
|
imp |
⊢ ( ( 𝜑 ∧ ( ∃ 𝑖 ∈ ℤ 𝑎 = ( 𝐿 ‘ 𝑖 ) ∧ ∃ 𝑗 ∈ ℤ 𝑏 = ( 𝐿 ‘ 𝑗 ) ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
| 86 |
32 85
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
| 87 |
86
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ ( Base ‘ 𝑌 ) ∀ 𝑏 ∈ ( Base ‘ 𝑌 ) ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
| 88 |
|
dff13 |
⊢ ( 𝐹 : ( Base ‘ 𝑌 ) –1-1→ 𝐵 ↔ ( 𝐹 : ( Base ‘ 𝑌 ) ⟶ 𝐵 ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑌 ) ∀ 𝑏 ∈ ( Base ‘ 𝑌 ) ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
| 89 |
25 87 88
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑌 ) –1-1→ 𝐵 ) |
| 90 |
1 4 6
|
iscyggen2 |
⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑋 ) ) ) ) |
| 91 |
24 90
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑋 ) ) ) ) |
| 92 |
8 91
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑋 ) ) ) |
| 93 |
92
|
simprd |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑋 ) ) |
| 94 |
|
oveq1 |
⊢ ( 𝑛 = 𝑗 → ( 𝑛 · 𝑋 ) = ( 𝑗 · 𝑋 ) ) |
| 95 |
94
|
eqeq2d |
⊢ ( 𝑛 = 𝑗 → ( 𝑧 = ( 𝑛 · 𝑋 ) ↔ 𝑧 = ( 𝑗 · 𝑋 ) ) ) |
| 96 |
95
|
cbvrexvw |
⊢ ( ∃ 𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑋 ) ↔ ∃ 𝑗 ∈ ℤ 𝑧 = ( 𝑗 · 𝑋 ) ) |
| 97 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) ) |
| 98 |
|
fof |
⊢ ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑌 ) → 𝐿 : ℤ ⟶ ( Base ‘ 𝑌 ) ) |
| 99 |
97 98
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → 𝐿 : ℤ ⟶ ( Base ‘ 𝑌 ) ) |
| 100 |
99
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑗 ∈ ℤ ) → ( 𝐿 ‘ 𝑗 ) ∈ ( Base ‘ 𝑌 ) ) |
| 101 |
59
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑗 ∈ ℤ ) → ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) = ( 𝑗 · 𝑋 ) ) |
| 102 |
101
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑗 ∈ ℤ ) → ( 𝑗 · 𝑋 ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) |
| 103 |
|
fveq2 |
⊢ ( 𝑎 = ( 𝐿 ‘ 𝑗 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) |
| 104 |
103
|
rspceeqv |
⊢ ( ( ( 𝐿 ‘ 𝑗 ) ∈ ( Base ‘ 𝑌 ) ∧ ( 𝑗 · 𝑋 ) = ( 𝐹 ‘ ( 𝐿 ‘ 𝑗 ) ) ) → ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) ( 𝑗 · 𝑋 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 105 |
100 102 104
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑗 ∈ ℤ ) → ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) ( 𝑗 · 𝑋 ) = ( 𝐹 ‘ 𝑎 ) ) |
| 106 |
|
eqeq1 |
⊢ ( 𝑧 = ( 𝑗 · 𝑋 ) → ( 𝑧 = ( 𝐹 ‘ 𝑎 ) ↔ ( 𝑗 · 𝑋 ) = ( 𝐹 ‘ 𝑎 ) ) ) |
| 107 |
106
|
rexbidv |
⊢ ( 𝑧 = ( 𝑗 · 𝑋 ) → ( ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) 𝑧 = ( 𝐹 ‘ 𝑎 ) ↔ ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) ( 𝑗 · 𝑋 ) = ( 𝐹 ‘ 𝑎 ) ) ) |
| 108 |
105 107
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) ∧ 𝑗 ∈ ℤ ) → ( 𝑧 = ( 𝑗 · 𝑋 ) → ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) 𝑧 = ( 𝐹 ‘ 𝑎 ) ) ) |
| 109 |
108
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ∃ 𝑗 ∈ ℤ 𝑧 = ( 𝑗 · 𝑋 ) → ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) 𝑧 = ( 𝐹 ‘ 𝑎 ) ) ) |
| 110 |
96 109
|
biimtrid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( ∃ 𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑋 ) → ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) 𝑧 = ( 𝐹 ‘ 𝑎 ) ) ) |
| 111 |
110
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑧 = ( 𝑛 · 𝑋 ) → ∀ 𝑧 ∈ 𝐵 ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) 𝑧 = ( 𝐹 ‘ 𝑎 ) ) ) |
| 112 |
93 111
|
mpd |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) 𝑧 = ( 𝐹 ‘ 𝑎 ) ) |
| 113 |
|
dffo3 |
⊢ ( 𝐹 : ( Base ‘ 𝑌 ) –onto→ 𝐵 ↔ ( 𝐹 : ( Base ‘ 𝑌 ) ⟶ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑎 ∈ ( Base ‘ 𝑌 ) 𝑧 = ( 𝐹 ‘ 𝑎 ) ) ) |
| 114 |
25 112 113
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑌 ) –onto→ 𝐵 ) |
| 115 |
|
df-f1o |
⊢ ( 𝐹 : ( Base ‘ 𝑌 ) –1-1-onto→ 𝐵 ↔ ( 𝐹 : ( Base ‘ 𝑌 ) –1-1→ 𝐵 ∧ 𝐹 : ( Base ‘ 𝑌 ) –onto→ 𝐵 ) ) |
| 116 |
89 114 115
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑌 ) –1-1-onto→ 𝐵 ) |
| 117 |
10 1
|
isgim |
⊢ ( 𝐹 ∈ ( 𝑌 GrpIso 𝐺 ) ↔ ( 𝐹 ∈ ( 𝑌 GrpHom 𝐺 ) ∧ 𝐹 : ( Base ‘ 𝑌 ) –1-1-onto→ 𝐵 ) ) |
| 118 |
74 116 117
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑌 GrpIso 𝐺 ) ) |
| 119 |
|
brgici |
⊢ ( 𝐹 ∈ ( 𝑌 GrpIso 𝐺 ) → 𝑌 ≃𝑔 𝐺 ) |
| 120 |
|
gicsym |
⊢ ( 𝑌 ≃𝑔 𝐺 → 𝐺 ≃𝑔 𝑌 ) |
| 121 |
118 119 120
|
3syl |
⊢ ( 𝜑 → 𝐺 ≃𝑔 𝑌 ) |