Metamath Proof Explorer


Theorem isghmd

Description: Deduction for a group homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015)

Ref Expression
Hypotheses isghmd.x 𝑋 = ( Base ‘ 𝑆 )
isghmd.y 𝑌 = ( Base ‘ 𝑇 )
isghmd.a + = ( +g𝑆 )
isghmd.b = ( +g𝑇 )
isghmd.s ( 𝜑𝑆 ∈ Grp )
isghmd.t ( 𝜑𝑇 ∈ Grp )
isghmd.f ( 𝜑𝐹 : 𝑋𝑌 )
isghmd.l ( ( 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
Assertion isghmd ( 𝜑𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) )

Proof

Step Hyp Ref Expression
1 isghmd.x 𝑋 = ( Base ‘ 𝑆 )
2 isghmd.y 𝑌 = ( Base ‘ 𝑇 )
3 isghmd.a + = ( +g𝑆 )
4 isghmd.b = ( +g𝑇 )
5 isghmd.s ( 𝜑𝑆 ∈ Grp )
6 isghmd.t ( 𝜑𝑇 ∈ Grp )
7 isghmd.f ( 𝜑𝐹 : 𝑋𝑌 )
8 isghmd.l ( ( 𝜑 ∧ ( 𝑥𝑋𝑦𝑋 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
9 8 ralrimivva ( 𝜑 → ∀ 𝑥𝑋𝑦𝑋 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) )
10 7 9 jca ( 𝜑 → ( 𝐹 : 𝑋𝑌 ∧ ∀ 𝑥𝑋𝑦𝑋 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ) )
11 1 2 3 4 isghm ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) ∧ ( 𝐹 : 𝑋𝑌 ∧ ∀ 𝑥𝑋𝑦𝑋 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹𝑥 ) ( 𝐹𝑦 ) ) ) ) )
12 5 6 10 11 syl21anbrc ( 𝜑𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) )