Metamath Proof Explorer


Theorem ringgrp

Description: A ring is a group. (Contributed by NM, 15-Sep-2011)

Ref Expression
Assertion ringgrp ( 𝑅 ∈ Ring → 𝑅 ∈ Grp )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
2 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
3 eqid ( +g𝑅 ) = ( +g𝑅 )
4 eqid ( .r𝑅 ) = ( .r𝑅 )
5 1 2 3 4 isring ( 𝑅 ∈ Ring ↔ ( 𝑅 ∈ Grp ∧ ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ ( Base ‘ 𝑅 ) ∀ 𝑧 ∈ ( Base ‘ 𝑅 ) ( ( 𝑥 ( .r𝑅 ) ( 𝑦 ( +g𝑅 ) 𝑧 ) ) = ( ( 𝑥 ( .r𝑅 ) 𝑦 ) ( +g𝑅 ) ( 𝑥 ( .r𝑅 ) 𝑧 ) ) ∧ ( ( 𝑥 ( +g𝑅 ) 𝑦 ) ( .r𝑅 ) 𝑧 ) = ( ( 𝑥 ( .r𝑅 ) 𝑧 ) ( +g𝑅 ) ( 𝑦 ( .r𝑅 ) 𝑧 ) ) ) ) )
6 5 simp1bi ( 𝑅 ∈ Ring → 𝑅 ∈ Grp )