Description: A ring is a group. (Contributed by NM, 15-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | ringgrp | |- ( R e. Ring -> R e. Grp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
2 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
3 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
4 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
5 | 1 2 3 4 | isring | |- ( R e. Ring <-> ( R e. Grp /\ ( mulGrp ` R ) e. Mnd /\ A. x e. ( Base ` R ) A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) ) ) |
6 | 5 | simp1bi | |- ( R e. Ring -> R e. Grp ) |