Metamath Proof Explorer


Theorem ringgrp

Description: A ring is a group. (Contributed by NM, 15-Sep-2011)

Ref Expression
Assertion ringgrp R Ring R Grp

Proof

Step Hyp Ref Expression
1 eqid Base R = Base R
2 eqid mulGrp R = mulGrp R
3 eqid + R = + R
4 eqid R = R
5 1 2 3 4 isring R Ring R Grp mulGrp R Mnd x Base R y Base R z Base R x R y + R z = x R y + R x R z x + R y R z = x R z + R y R z
6 5 simp1bi R Ring R Grp