Metamath Proof Explorer


Theorem ringmgp

Description: A ring is a monoid under multiplication. (Contributed by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypothesis ringmgp.g G=mulGrpR
Assertion ringmgp RRingGMnd

Proof

Step Hyp Ref Expression
1 ringmgp.g G=mulGrpR
2 eqid BaseR=BaseR
3 eqid +R=+R
4 eqid R=R
5 2 1 3 4 isring RRingRGrpGMndxBaseRyBaseRzBaseRxRy+Rz=xRy+RxRzx+RyRz=xRz+RyRz
6 5 simp2bi RRingGMnd