| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cygzn.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | cygzn.n |  |-  N = if ( B e. Fin , ( # ` B ) , 0 ) | 
						
							| 3 |  | cygzn.y |  |-  Y = ( Z/nZ ` N ) | 
						
							| 4 |  | eqid |  |-  ( .g ` G ) = ( .g ` G ) | 
						
							| 5 |  | eqid |  |-  { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } = { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } | 
						
							| 6 | 1 4 5 | iscyg2 |  |-  ( G e. CycGrp <-> ( G e. Grp /\ { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } =/= (/) ) ) | 
						
							| 7 | 6 | simprbi |  |-  ( G e. CycGrp -> { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } =/= (/) ) | 
						
							| 8 |  | n0 |  |-  ( { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } =/= (/) <-> E. g g e. { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } ) | 
						
							| 9 | 7 8 | sylib |  |-  ( G e. CycGrp -> E. g g e. { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } ) | 
						
							| 10 |  | eqid |  |-  ( ZRHom ` Y ) = ( ZRHom ` Y ) | 
						
							| 11 |  | simpl |  |-  ( ( G e. CycGrp /\ g e. { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } ) -> G e. CycGrp ) | 
						
							| 12 |  | simpr |  |-  ( ( G e. CycGrp /\ g e. { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } ) -> g e. { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } ) | 
						
							| 13 |  | eqid |  |-  ran ( m e. ZZ |-> <. ( ( ZRHom ` Y ) ` m ) , ( m ( .g ` G ) g ) >. ) = ran ( m e. ZZ |-> <. ( ( ZRHom ` Y ) ` m ) , ( m ( .g ` G ) g ) >. ) | 
						
							| 14 | 1 2 3 4 10 5 11 12 13 | cygznlem3 |  |-  ( ( G e. CycGrp /\ g e. { x e. B | ran ( n e. ZZ |-> ( n ( .g ` G ) x ) ) = B } ) -> G ~=g Y ) | 
						
							| 15 | 9 14 | exlimddv |  |-  ( G e. CycGrp -> G ~=g Y ) |