| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscyg.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | iscyg.2 | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | iscyg3.e | ⊢ 𝐸  =  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑥 ) )  =  𝐵 } | 
						
							| 4 |  | cyggenod.o | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 5 | 1 2 3 | iscyggen | ⊢ ( 𝑋  ∈  𝐸  ↔  ( 𝑋  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  =  𝐵 ) ) | 
						
							| 6 | 5 | simplbi | ⊢ ( 𝑋  ∈  𝐸  →  𝑋  ∈  𝐵 ) | 
						
							| 7 |  | eqid | ⊢ ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  =  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) ) | 
						
							| 8 | 1 4 2 7 | dfod2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ( 𝑂 ‘ 𝑋 )  =  if ( ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ∈  Fin ,  ( ♯ ‘ ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) ) ) ,  0 ) ) | 
						
							| 9 | 6 8 | sylan2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐸 )  →  ( 𝑂 ‘ 𝑋 )  =  if ( ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ∈  Fin ,  ( ♯ ‘ ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) ) ) ,  0 ) ) | 
						
							| 10 | 5 | simprbi | ⊢ ( 𝑋  ∈  𝐸  →  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  =  𝐵 ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐸 )  →  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  =  𝐵 ) | 
						
							| 12 | 11 | eleq1d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐸 )  →  ( ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ∈  Fin  ↔  𝐵  ∈  Fin ) ) | 
						
							| 13 | 11 | fveq2d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐸 )  →  ( ♯ ‘ ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) ) )  =  ( ♯ ‘ 𝐵 ) ) | 
						
							| 14 | 12 13 | ifbieq1d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐸 )  →  if ( ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  ∈  Fin ,  ( ♯ ‘ ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) ) ) ,  0 )  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) | 
						
							| 15 | 9 14 | eqtrd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐸 )  →  ( 𝑂 ‘ 𝑋 )  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) |