Metamath Proof Explorer


Theorem cyggenod2

Description: In an infinite cyclic group, the generator must have infinite order, but this property no longer characterizes the generators. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses iscyg.1 B=BaseG
iscyg.2 ·˙=G
iscyg3.e E=xB|rannn·˙x=B
cyggenod.o O=odG
Assertion cyggenod2 GGrpXEOX=ifBFinB0

Proof

Step Hyp Ref Expression
1 iscyg.1 B=BaseG
2 iscyg.2 ·˙=G
3 iscyg3.e E=xB|rannn·˙x=B
4 cyggenod.o O=odG
5 1 2 3 iscyggen XEXBrannn·˙X=B
6 5 simplbi XEXB
7 eqid nn·˙X=nn·˙X
8 1 4 2 7 dfod2 GGrpXBOX=ifrannn·˙XFinrannn·˙X0
9 6 8 sylan2 GGrpXEOX=ifrannn·˙XFinrannn·˙X0
10 5 simprbi XErannn·˙X=B
11 10 adantl GGrpXErannn·˙X=B
12 11 eleq1d GGrpXErannn·˙XFinBFin
13 11 fveq2d GGrpXErannn·˙X=B
14 12 13 ifbieq1d GGrpXEifrannn·˙XFinrannn·˙X0=ifBFinB0
15 9 14 eqtrd GGrpXEOX=ifBFinB0