Description: In an infinite cyclic group, the generator must have infinite order, but this property no longer characterizes the generators. (Contributed by Mario Carneiro, 21-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | iscyg.1 | |
|
iscyg.2 | |
||
iscyg3.e | |
||
cyggenod.o | |
||
Assertion | cyggenod2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscyg.1 | |
|
2 | iscyg.2 | |
|
3 | iscyg3.e | |
|
4 | cyggenod.o | |
|
5 | 1 2 3 | iscyggen | |
6 | 5 | simplbi | |
7 | eqid | |
|
8 | 1 4 2 7 | dfod2 | |
9 | 6 8 | sylan2 | |
10 | 5 | simprbi | |
11 | 10 | adantl | |
12 | 11 | eleq1d | |
13 | 11 | fveq2d | |
14 | 12 13 | ifbieq1d | |
15 | 9 14 | eqtrd | |