Metamath Proof Explorer


Definition df-od

Description: Define the order of an element in a group. (Contributed by Mario Carneiro, 13-Jul-2014) (Revised by Stefan O'Rear, 4-Sep-2015) (Revised by AV, 5-Oct-2020)

Ref Expression
Assertion df-od od=gVxBasegn|ngx=0g/iifi=0supi<

Detailed syntax breakdown

Step Hyp Ref Expression
0 cod classod
1 vg setvarg
2 cvv classV
3 vx setvarx
4 cbs classBase
5 1 cv setvarg
6 5 4 cfv classBaseg
7 vn setvarn
8 cn class
9 7 cv setvarn
10 cmg class𝑔
11 5 10 cfv classg
12 3 cv setvarx
13 9 12 11 co classngx
14 c0g class0𝑔
15 5 14 cfv class0g
16 13 15 wceq wffngx=0g
17 16 7 8 crab classn|ngx=0g
18 vi setvari
19 18 cv setvari
20 c0 class
21 19 20 wceq wffi=
22 cc0 class0
23 cr class
24 clt class<
25 19 23 24 cinf classsupi<
26 21 22 25 cif classifi=0supi<
27 18 17 26 csb classn|ngx=0g/iifi=0supi<
28 3 6 27 cmpt classxBasegn|ngx=0g/iifi=0supi<
29 1 2 28 cmpt classgVxBasegn|ngx=0g/iifi=0supi<
30 0 29 wceq wffod=gVxBasegn|ngx=0g/iifi=0supi<