| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscyg.1 |  |-  B = ( Base ` G ) | 
						
							| 2 |  | iscyg.2 |  |-  .x. = ( .g ` G ) | 
						
							| 3 |  | iscyg3.e |  |-  E = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } | 
						
							| 4 |  | cyggenod.o |  |-  O = ( od ` G ) | 
						
							| 5 | 1 2 3 | iscyggen |  |-  ( X e. E <-> ( X e. B /\ ran ( n e. ZZ |-> ( n .x. X ) ) = B ) ) | 
						
							| 6 | 5 | simplbi |  |-  ( X e. E -> X e. B ) | 
						
							| 7 |  | eqid |  |-  ( n e. ZZ |-> ( n .x. X ) ) = ( n e. ZZ |-> ( n .x. X ) ) | 
						
							| 8 | 1 4 2 7 | dfod2 |  |-  ( ( G e. Grp /\ X e. B ) -> ( O ` X ) = if ( ran ( n e. ZZ |-> ( n .x. X ) ) e. Fin , ( # ` ran ( n e. ZZ |-> ( n .x. X ) ) ) , 0 ) ) | 
						
							| 9 | 6 8 | sylan2 |  |-  ( ( G e. Grp /\ X e. E ) -> ( O ` X ) = if ( ran ( n e. ZZ |-> ( n .x. X ) ) e. Fin , ( # ` ran ( n e. ZZ |-> ( n .x. X ) ) ) , 0 ) ) | 
						
							| 10 | 5 | simprbi |  |-  ( X e. E -> ran ( n e. ZZ |-> ( n .x. X ) ) = B ) | 
						
							| 11 | 10 | adantl |  |-  ( ( G e. Grp /\ X e. E ) -> ran ( n e. ZZ |-> ( n .x. X ) ) = B ) | 
						
							| 12 | 11 | eleq1d |  |-  ( ( G e. Grp /\ X e. E ) -> ( ran ( n e. ZZ |-> ( n .x. X ) ) e. Fin <-> B e. Fin ) ) | 
						
							| 13 | 11 | fveq2d |  |-  ( ( G e. Grp /\ X e. E ) -> ( # ` ran ( n e. ZZ |-> ( n .x. X ) ) ) = ( # ` B ) ) | 
						
							| 14 | 12 13 | ifbieq1d |  |-  ( ( G e. Grp /\ X e. E ) -> if ( ran ( n e. ZZ |-> ( n .x. X ) ) e. Fin , ( # ` ran ( n e. ZZ |-> ( n .x. X ) ) ) , 0 ) = if ( B e. Fin , ( # ` B ) , 0 ) ) | 
						
							| 15 | 9 14 | eqtrd |  |-  ( ( G e. Grp /\ X e. E ) -> ( O ` X ) = if ( B e. Fin , ( # ` B ) , 0 ) ) |