Metamath Proof Explorer


Theorem iscyggen

Description: The property of being a cyclic generator for a group. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses iscyg.1 B=BaseG
iscyg.2 ·˙=G
iscyg3.e E=xB|rannn·˙x=B
Assertion iscyggen XEXBrannn·˙X=B

Proof

Step Hyp Ref Expression
1 iscyg.1 B=BaseG
2 iscyg.2 ·˙=G
3 iscyg3.e E=xB|rannn·˙x=B
4 simpl x=Xnx=X
5 4 oveq2d x=Xnn·˙x=n·˙X
6 5 mpteq2dva x=Xnn·˙x=nn·˙X
7 6 rneqd x=Xrannn·˙x=rannn·˙X
8 7 eqeq1d x=Xrannn·˙x=Brannn·˙X=B
9 8 3 elrab2 XEXBrannn·˙X=B