| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zlmbas.w |
|- W = ( ZMod ` G ) |
| 2 |
|
scaid |
|- Scalar = Slot ( Scalar ` ndx ) |
| 3 |
|
vscandxnscandx |
|- ( .s ` ndx ) =/= ( Scalar ` ndx ) |
| 4 |
3
|
necomi |
|- ( Scalar ` ndx ) =/= ( .s ` ndx ) |
| 5 |
2 4
|
setsnid |
|- ( Scalar ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) = ( Scalar ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) |
| 6 |
|
zringring |
|- ZZring e. Ring |
| 7 |
2
|
setsid |
|- ( ( G e. V /\ ZZring e. Ring ) -> ZZring = ( Scalar ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) ) |
| 8 |
6 7
|
mpan2 |
|- ( G e. V -> ZZring = ( Scalar ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) ) |
| 9 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
| 10 |
1 9
|
zlmval |
|- ( G e. V -> W = ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) |
| 11 |
10
|
fveq2d |
|- ( G e. V -> ( Scalar ` W ) = ( Scalar ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) ) |
| 12 |
5 8 11
|
3eqtr4a |
|- ( G e. V -> ZZring = ( Scalar ` W ) ) |