Metamath Proof Explorer


Theorem zlmsca

Description: Scalar ring of a ZZ -module. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 12-Jun-2019) (Proof shortened by AV, 2-Nov-2024)

Ref Expression
Hypothesis zlmbas.w W = ℤMod G
Assertion zlmsca G V ring = Scalar W

Proof

Step Hyp Ref Expression
1 zlmbas.w W = ℤMod G
2 scaid Scalar = Slot Scalar ndx
3 vscandxnscandx ndx Scalar ndx
4 3 necomi Scalar ndx ndx
5 2 4 setsnid Scalar G sSet Scalar ndx ring = Scalar G sSet Scalar ndx ring sSet ndx G
6 zringring ring Ring
7 2 setsid G V ring Ring ring = Scalar G sSet Scalar ndx ring
8 6 7 mpan2 G V ring = Scalar G sSet Scalar ndx ring
9 eqid G = G
10 1 9 zlmval G V W = G sSet Scalar ndx ring sSet ndx G
11 10 fveq2d G V Scalar W = Scalar G sSet Scalar ndx ring sSet ndx G
12 5 8 11 3eqtr4a G V ring = Scalar W