Metamath Proof Explorer


Theorem zlmsca

Description: Scalar ring of a ZZ -module. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 12-Jun-2019) (Proof shortened by AV, 2-Nov-2024)

Ref Expression
Hypothesis zlmbas.w W=ℤModG
Assertion zlmsca GVring=ScalarW

Proof

Step Hyp Ref Expression
1 zlmbas.w W=ℤModG
2 scaid Scalar=SlotScalarndx
3 vscandxnscandx ndxScalarndx
4 3 necomi Scalarndxndx
5 2 4 setsnid ScalarGsSetScalarndxring=ScalarGsSetScalarndxringsSetndxG
6 zringring ringRing
7 2 setsid GVringRingring=ScalarGsSetScalarndxring
8 6 7 mpan2 GVring=ScalarGsSetScalarndxring
9 eqid G=G
10 1 9 zlmval GVW=GsSetScalarndxringsSetndxG
11 10 fveq2d GVScalarW=ScalarGsSetScalarndxringsSetndxG
12 5 8 11 3eqtr4a GVring=ScalarW