| Step |
Hyp |
Ref |
Expression |
| 1 |
|
znzrh2.s |
|- S = ( RSpan ` ZZring ) |
| 2 |
|
znzrh2.r |
|- .~ = ( ZZring ~QG ( S ` { N } ) ) |
| 3 |
|
znzrh2.y |
|- Y = ( Z/nZ ` N ) |
| 4 |
|
znzrh2.2 |
|- L = ( ZRHom ` Y ) |
| 5 |
|
zringring |
|- ZZring e. Ring |
| 6 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
| 7 |
1
|
znlidl |
|- ( N e. ZZ -> ( S ` { N } ) e. ( LIdeal ` ZZring ) ) |
| 8 |
6 7
|
syl |
|- ( N e. NN0 -> ( S ` { N } ) e. ( LIdeal ` ZZring ) ) |
| 9 |
2
|
oveq2i |
|- ( ZZring /s .~ ) = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) ) |
| 10 |
|
zringcrng |
|- ZZring e. CRing |
| 11 |
|
eqid |
|- ( LIdeal ` ZZring ) = ( LIdeal ` ZZring ) |
| 12 |
11
|
crng2idl |
|- ( ZZring e. CRing -> ( LIdeal ` ZZring ) = ( 2Ideal ` ZZring ) ) |
| 13 |
10 12
|
ax-mp |
|- ( LIdeal ` ZZring ) = ( 2Ideal ` ZZring ) |
| 14 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
| 15 |
|
eceq2 |
|- ( .~ = ( ZZring ~QG ( S ` { N } ) ) -> [ x ] .~ = [ x ] ( ZZring ~QG ( S ` { N } ) ) ) |
| 16 |
2 15
|
ax-mp |
|- [ x ] .~ = [ x ] ( ZZring ~QG ( S ` { N } ) ) |
| 17 |
16
|
mpteq2i |
|- ( x e. ZZ |-> [ x ] .~ ) = ( x e. ZZ |-> [ x ] ( ZZring ~QG ( S ` { N } ) ) ) |
| 18 |
9 13 14 17
|
qusrhm |
|- ( ( ZZring e. Ring /\ ( S ` { N } ) e. ( LIdeal ` ZZring ) ) -> ( x e. ZZ |-> [ x ] .~ ) e. ( ZZring RingHom ( ZZring /s .~ ) ) ) |
| 19 |
5 8 18
|
sylancr |
|- ( N e. NN0 -> ( x e. ZZ |-> [ x ] .~ ) e. ( ZZring RingHom ( ZZring /s .~ ) ) ) |
| 20 |
1 9
|
zncrng2 |
|- ( N e. ZZ -> ( ZZring /s .~ ) e. CRing ) |
| 21 |
|
crngring |
|- ( ( ZZring /s .~ ) e. CRing -> ( ZZring /s .~ ) e. Ring ) |
| 22 |
|
eqid |
|- ( ZRHom ` ( ZZring /s .~ ) ) = ( ZRHom ` ( ZZring /s .~ ) ) |
| 23 |
22
|
zrhrhmb |
|- ( ( ZZring /s .~ ) e. Ring -> ( ( x e. ZZ |-> [ x ] .~ ) e. ( ZZring RingHom ( ZZring /s .~ ) ) <-> ( x e. ZZ |-> [ x ] .~ ) = ( ZRHom ` ( ZZring /s .~ ) ) ) ) |
| 24 |
6 20 21 23
|
4syl |
|- ( N e. NN0 -> ( ( x e. ZZ |-> [ x ] .~ ) e. ( ZZring RingHom ( ZZring /s .~ ) ) <-> ( x e. ZZ |-> [ x ] .~ ) = ( ZRHom ` ( ZZring /s .~ ) ) ) ) |
| 25 |
19 24
|
mpbid |
|- ( N e. NN0 -> ( x e. ZZ |-> [ x ] .~ ) = ( ZRHom ` ( ZZring /s .~ ) ) ) |
| 26 |
1 9 3
|
znzrh |
|- ( N e. NN0 -> ( ZRHom ` ( ZZring /s .~ ) ) = ( ZRHom ` Y ) ) |
| 27 |
25 26
|
eqtr2d |
|- ( N e. NN0 -> ( ZRHom ` Y ) = ( x e. ZZ |-> [ x ] .~ ) ) |
| 28 |
4 27
|
eqtrid |
|- ( N e. NN0 -> L = ( x e. ZZ |-> [ x ] .~ ) ) |