| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qusring.u |
|- U = ( R /s ( R ~QG S ) ) |
| 2 |
|
qusring.i |
|- I = ( 2Ideal ` R ) |
| 3 |
|
qusrhm.x |
|- X = ( Base ` R ) |
| 4 |
|
qusrhm.f |
|- F = ( x e. X |-> [ x ] ( R ~QG S ) ) |
| 5 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 6 |
|
eqid |
|- ( 1r ` U ) = ( 1r ` U ) |
| 7 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 8 |
|
eqid |
|- ( .r ` U ) = ( .r ` U ) |
| 9 |
|
simpl |
|- ( ( R e. Ring /\ S e. I ) -> R e. Ring ) |
| 10 |
1 2
|
qusring |
|- ( ( R e. Ring /\ S e. I ) -> U e. Ring ) |
| 11 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
| 12 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
| 13 |
|
eqid |
|- ( LIdeal ` ( oppR ` R ) ) = ( LIdeal ` ( oppR ` R ) ) |
| 14 |
11 12 13 2
|
2idlval |
|- I = ( ( LIdeal ` R ) i^i ( LIdeal ` ( oppR ` R ) ) ) |
| 15 |
14
|
elin2 |
|- ( S e. I <-> ( S e. ( LIdeal ` R ) /\ S e. ( LIdeal ` ( oppR ` R ) ) ) ) |
| 16 |
15
|
simplbi |
|- ( S e. I -> S e. ( LIdeal ` R ) ) |
| 17 |
11
|
lidlsubg |
|- ( ( R e. Ring /\ S e. ( LIdeal ` R ) ) -> S e. ( SubGrp ` R ) ) |
| 18 |
16 17
|
sylan2 |
|- ( ( R e. Ring /\ S e. I ) -> S e. ( SubGrp ` R ) ) |
| 19 |
|
eqid |
|- ( R ~QG S ) = ( R ~QG S ) |
| 20 |
3 19
|
eqger |
|- ( S e. ( SubGrp ` R ) -> ( R ~QG S ) Er X ) |
| 21 |
18 20
|
syl |
|- ( ( R e. Ring /\ S e. I ) -> ( R ~QG S ) Er X ) |
| 22 |
3
|
fvexi |
|- X e. _V |
| 23 |
22
|
a1i |
|- ( ( R e. Ring /\ S e. I ) -> X e. _V ) |
| 24 |
21 23 4
|
divsfval |
|- ( ( R e. Ring /\ S e. I ) -> ( F ` ( 1r ` R ) ) = [ ( 1r ` R ) ] ( R ~QG S ) ) |
| 25 |
1 2 5
|
qus1 |
|- ( ( R e. Ring /\ S e. I ) -> ( U e. Ring /\ [ ( 1r ` R ) ] ( R ~QG S ) = ( 1r ` U ) ) ) |
| 26 |
25
|
simprd |
|- ( ( R e. Ring /\ S e. I ) -> [ ( 1r ` R ) ] ( R ~QG S ) = ( 1r ` U ) ) |
| 27 |
24 26
|
eqtrd |
|- ( ( R e. Ring /\ S e. I ) -> ( F ` ( 1r ` R ) ) = ( 1r ` U ) ) |
| 28 |
1
|
a1i |
|- ( ( R e. Ring /\ S e. I ) -> U = ( R /s ( R ~QG S ) ) ) |
| 29 |
3
|
a1i |
|- ( ( R e. Ring /\ S e. I ) -> X = ( Base ` R ) ) |
| 30 |
3 19 2 7
|
2idlcpbl |
|- ( ( R e. Ring /\ S e. I ) -> ( ( a ( R ~QG S ) c /\ b ( R ~QG S ) d ) -> ( a ( .r ` R ) b ) ( R ~QG S ) ( c ( .r ` R ) d ) ) ) |
| 31 |
3 7
|
ringcl |
|- ( ( R e. Ring /\ y e. X /\ z e. X ) -> ( y ( .r ` R ) z ) e. X ) |
| 32 |
31
|
3expb |
|- ( ( R e. Ring /\ ( y e. X /\ z e. X ) ) -> ( y ( .r ` R ) z ) e. X ) |
| 33 |
32
|
adantlr |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( y e. X /\ z e. X ) ) -> ( y ( .r ` R ) z ) e. X ) |
| 34 |
33
|
caovclg |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( c e. X /\ d e. X ) ) -> ( c ( .r ` R ) d ) e. X ) |
| 35 |
28 29 21 9 30 34 7 8
|
qusmulval |
|- ( ( ( R e. Ring /\ S e. I ) /\ y e. X /\ z e. X ) -> ( [ y ] ( R ~QG S ) ( .r ` U ) [ z ] ( R ~QG S ) ) = [ ( y ( .r ` R ) z ) ] ( R ~QG S ) ) |
| 36 |
35
|
3expb |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( y e. X /\ z e. X ) ) -> ( [ y ] ( R ~QG S ) ( .r ` U ) [ z ] ( R ~QG S ) ) = [ ( y ( .r ` R ) z ) ] ( R ~QG S ) ) |
| 37 |
21
|
adantr |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( y e. X /\ z e. X ) ) -> ( R ~QG S ) Er X ) |
| 38 |
22
|
a1i |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( y e. X /\ z e. X ) ) -> X e. _V ) |
| 39 |
37 38 4
|
divsfval |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( y e. X /\ z e. X ) ) -> ( F ` y ) = [ y ] ( R ~QG S ) ) |
| 40 |
37 38 4
|
divsfval |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( y e. X /\ z e. X ) ) -> ( F ` z ) = [ z ] ( R ~QG S ) ) |
| 41 |
39 40
|
oveq12d |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( y e. X /\ z e. X ) ) -> ( ( F ` y ) ( .r ` U ) ( F ` z ) ) = ( [ y ] ( R ~QG S ) ( .r ` U ) [ z ] ( R ~QG S ) ) ) |
| 42 |
37 38 4
|
divsfval |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( y e. X /\ z e. X ) ) -> ( F ` ( y ( .r ` R ) z ) ) = [ ( y ( .r ` R ) z ) ] ( R ~QG S ) ) |
| 43 |
36 41 42
|
3eqtr4rd |
|- ( ( ( R e. Ring /\ S e. I ) /\ ( y e. X /\ z e. X ) ) -> ( F ` ( y ( .r ` R ) z ) ) = ( ( F ` y ) ( .r ` U ) ( F ` z ) ) ) |
| 44 |
|
ringabl |
|- ( R e. Ring -> R e. Abel ) |
| 45 |
44
|
adantr |
|- ( ( R e. Ring /\ S e. I ) -> R e. Abel ) |
| 46 |
|
ablnsg |
|- ( R e. Abel -> ( NrmSGrp ` R ) = ( SubGrp ` R ) ) |
| 47 |
45 46
|
syl |
|- ( ( R e. Ring /\ S e. I ) -> ( NrmSGrp ` R ) = ( SubGrp ` R ) ) |
| 48 |
18 47
|
eleqtrrd |
|- ( ( R e. Ring /\ S e. I ) -> S e. ( NrmSGrp ` R ) ) |
| 49 |
3 1 4
|
qusghm |
|- ( S e. ( NrmSGrp ` R ) -> F e. ( R GrpHom U ) ) |
| 50 |
48 49
|
syl |
|- ( ( R e. Ring /\ S e. I ) -> F e. ( R GrpHom U ) ) |
| 51 |
3 5 6 7 8 9 10 27 43 50
|
isrhm2d |
|- ( ( R e. Ring /\ S e. I ) -> F e. ( R RingHom U ) ) |