Step |
Hyp |
Ref |
Expression |
1 |
|
qusghm.x |
|- X = ( Base ` G ) |
2 |
|
qusghm.h |
|- H = ( G /s ( G ~QG Y ) ) |
3 |
|
qusghm.f |
|- F = ( x e. X |-> [ x ] ( G ~QG Y ) ) |
4 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
5 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
6 |
|
eqid |
|- ( +g ` H ) = ( +g ` H ) |
7 |
|
nsgsubg |
|- ( Y e. ( NrmSGrp ` G ) -> Y e. ( SubGrp ` G ) ) |
8 |
|
subgrcl |
|- ( Y e. ( SubGrp ` G ) -> G e. Grp ) |
9 |
7 8
|
syl |
|- ( Y e. ( NrmSGrp ` G ) -> G e. Grp ) |
10 |
2
|
qusgrp |
|- ( Y e. ( NrmSGrp ` G ) -> H e. Grp ) |
11 |
2 1 4
|
quseccl |
|- ( ( Y e. ( NrmSGrp ` G ) /\ x e. X ) -> [ x ] ( G ~QG Y ) e. ( Base ` H ) ) |
12 |
11 3
|
fmptd |
|- ( Y e. ( NrmSGrp ` G ) -> F : X --> ( Base ` H ) ) |
13 |
2 1 5 6
|
qusadd |
|- ( ( Y e. ( NrmSGrp ` G ) /\ y e. X /\ z e. X ) -> ( [ y ] ( G ~QG Y ) ( +g ` H ) [ z ] ( G ~QG Y ) ) = [ ( y ( +g ` G ) z ) ] ( G ~QG Y ) ) |
14 |
13
|
3expb |
|- ( ( Y e. ( NrmSGrp ` G ) /\ ( y e. X /\ z e. X ) ) -> ( [ y ] ( G ~QG Y ) ( +g ` H ) [ z ] ( G ~QG Y ) ) = [ ( y ( +g ` G ) z ) ] ( G ~QG Y ) ) |
15 |
|
eceq1 |
|- ( x = y -> [ x ] ( G ~QG Y ) = [ y ] ( G ~QG Y ) ) |
16 |
|
ovex |
|- ( G ~QG Y ) e. _V |
17 |
|
ecexg |
|- ( ( G ~QG Y ) e. _V -> [ x ] ( G ~QG Y ) e. _V ) |
18 |
16 17
|
ax-mp |
|- [ x ] ( G ~QG Y ) e. _V |
19 |
15 3 18
|
fvmpt3i |
|- ( y e. X -> ( F ` y ) = [ y ] ( G ~QG Y ) ) |
20 |
19
|
ad2antrl |
|- ( ( Y e. ( NrmSGrp ` G ) /\ ( y e. X /\ z e. X ) ) -> ( F ` y ) = [ y ] ( G ~QG Y ) ) |
21 |
|
eceq1 |
|- ( x = z -> [ x ] ( G ~QG Y ) = [ z ] ( G ~QG Y ) ) |
22 |
21 3 18
|
fvmpt3i |
|- ( z e. X -> ( F ` z ) = [ z ] ( G ~QG Y ) ) |
23 |
22
|
ad2antll |
|- ( ( Y e. ( NrmSGrp ` G ) /\ ( y e. X /\ z e. X ) ) -> ( F ` z ) = [ z ] ( G ~QG Y ) ) |
24 |
20 23
|
oveq12d |
|- ( ( Y e. ( NrmSGrp ` G ) /\ ( y e. X /\ z e. X ) ) -> ( ( F ` y ) ( +g ` H ) ( F ` z ) ) = ( [ y ] ( G ~QG Y ) ( +g ` H ) [ z ] ( G ~QG Y ) ) ) |
25 |
1 5
|
grpcl |
|- ( ( G e. Grp /\ y e. X /\ z e. X ) -> ( y ( +g ` G ) z ) e. X ) |
26 |
25
|
3expb |
|- ( ( G e. Grp /\ ( y e. X /\ z e. X ) ) -> ( y ( +g ` G ) z ) e. X ) |
27 |
9 26
|
sylan |
|- ( ( Y e. ( NrmSGrp ` G ) /\ ( y e. X /\ z e. X ) ) -> ( y ( +g ` G ) z ) e. X ) |
28 |
|
eceq1 |
|- ( x = ( y ( +g ` G ) z ) -> [ x ] ( G ~QG Y ) = [ ( y ( +g ` G ) z ) ] ( G ~QG Y ) ) |
29 |
28 3 18
|
fvmpt3i |
|- ( ( y ( +g ` G ) z ) e. X -> ( F ` ( y ( +g ` G ) z ) ) = [ ( y ( +g ` G ) z ) ] ( G ~QG Y ) ) |
30 |
27 29
|
syl |
|- ( ( Y e. ( NrmSGrp ` G ) /\ ( y e. X /\ z e. X ) ) -> ( F ` ( y ( +g ` G ) z ) ) = [ ( y ( +g ` G ) z ) ] ( G ~QG Y ) ) |
31 |
14 24 30
|
3eqtr4rd |
|- ( ( Y e. ( NrmSGrp ` G ) /\ ( y e. X /\ z e. X ) ) -> ( F ` ( y ( +g ` G ) z ) ) = ( ( F ` y ) ( +g ` H ) ( F ` z ) ) ) |
32 |
1 4 5 6 9 10 12 31
|
isghmd |
|- ( Y e. ( NrmSGrp ` G ) -> F e. ( G GrpHom H ) ) |