Step |
Hyp |
Ref |
Expression |
1 |
|
qusgrp.h |
|- H = ( G /s ( G ~QG S ) ) |
2 |
|
qusadd.v |
|- V = ( Base ` G ) |
3 |
|
quseccl.b |
|- B = ( Base ` H ) |
4 |
|
ovex |
|- ( G ~QG S ) e. _V |
5 |
4
|
ecelqsi |
|- ( X e. V -> [ X ] ( G ~QG S ) e. ( V /. ( G ~QG S ) ) ) |
6 |
5
|
adantl |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> [ X ] ( G ~QG S ) e. ( V /. ( G ~QG S ) ) ) |
7 |
1
|
a1i |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> H = ( G /s ( G ~QG S ) ) ) |
8 |
2
|
a1i |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> V = ( Base ` G ) ) |
9 |
4
|
a1i |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> ( G ~QG S ) e. _V ) |
10 |
|
nsgsubg |
|- ( S e. ( NrmSGrp ` G ) -> S e. ( SubGrp ` G ) ) |
11 |
|
subgrcl |
|- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
12 |
10 11
|
syl |
|- ( S e. ( NrmSGrp ` G ) -> G e. Grp ) |
13 |
12
|
adantr |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> G e. Grp ) |
14 |
7 8 9 13
|
qusbas |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> ( V /. ( G ~QG S ) ) = ( Base ` H ) ) |
15 |
14 3
|
eqtr4di |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> ( V /. ( G ~QG S ) ) = B ) |
16 |
6 15
|
eleqtrd |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> [ X ] ( G ~QG S ) e. B ) |