Metamath Proof Explorer


Theorem quseccl

Description: Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015) (Proof shortened by AV, 9-Mar-2025)

Ref Expression
Hypotheses qusgrp.h
|- H = ( G /s ( G ~QG S ) )
qusadd.v
|- V = ( Base ` G )
quseccl.b
|- B = ( Base ` H )
Assertion quseccl
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> [ X ] ( G ~QG S ) e. B )

Proof

Step Hyp Ref Expression
1 qusgrp.h
 |-  H = ( G /s ( G ~QG S ) )
2 qusadd.v
 |-  V = ( Base ` G )
3 quseccl.b
 |-  B = ( Base ` H )
4 nsgsubg
 |-  ( S e. ( NrmSGrp ` G ) -> S e. ( SubGrp ` G ) )
5 subgrcl
 |-  ( S e. ( SubGrp ` G ) -> G e. Grp )
6 4 5 syl
 |-  ( S e. ( NrmSGrp ` G ) -> G e. Grp )
7 eqid
 |-  ( G ~QG S ) = ( G ~QG S )
8 7 1 2 3 quseccl0
 |-  ( ( G e. Grp /\ X e. V ) -> [ X ] ( G ~QG S ) e. B )
9 6 8 sylan
 |-  ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> [ X ] ( G ~QG S ) e. B )