Description: Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015) (Proof shortened by AV, 9-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qusgrp.h | |- H = ( G /s ( G ~QG S ) ) |
|
qusadd.v | |- V = ( Base ` G ) |
||
quseccl.b | |- B = ( Base ` H ) |
||
Assertion | quseccl | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> [ X ] ( G ~QG S ) e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusgrp.h | |- H = ( G /s ( G ~QG S ) ) |
|
2 | qusadd.v | |- V = ( Base ` G ) |
|
3 | quseccl.b | |- B = ( Base ` H ) |
|
4 | nsgsubg | |- ( S e. ( NrmSGrp ` G ) -> S e. ( SubGrp ` G ) ) |
|
5 | subgrcl | |- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
|
6 | 4 5 | syl | |- ( S e. ( NrmSGrp ` G ) -> G e. Grp ) |
7 | eqid | |- ( G ~QG S ) = ( G ~QG S ) |
|
8 | 7 1 2 3 | quseccl0 | |- ( ( G e. Grp /\ X e. V ) -> [ X ] ( G ~QG S ) e. B ) |
9 | 6 8 | sylan | |- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> [ X ] ( G ~QG S ) e. B ) |