Metamath Proof Explorer


Theorem quseccl

Description: Closure of the quotient map for a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015)

Ref Expression
Hypotheses qusgrp.h H = G / 𝑠 G ~ QG S
qusadd.v V = Base G
quseccl.b B = Base H
Assertion quseccl S NrmSGrp G X V X G ~ QG S B

Proof

Step Hyp Ref Expression
1 qusgrp.h H = G / 𝑠 G ~ QG S
2 qusadd.v V = Base G
3 quseccl.b B = Base H
4 ovex G ~ QG S V
5 4 ecelqsi X V X G ~ QG S V / G ~ QG S
6 5 adantl S NrmSGrp G X V X G ~ QG S V / G ~ QG S
7 1 a1i S NrmSGrp G X V H = G / 𝑠 G ~ QG S
8 2 a1i S NrmSGrp G X V V = Base G
9 4 a1i S NrmSGrp G X V G ~ QG S V
10 nsgsubg S NrmSGrp G S SubGrp G
11 subgrcl S SubGrp G G Grp
12 10 11 syl S NrmSGrp G G Grp
13 12 adantr S NrmSGrp G X V G Grp
14 7 8 9 13 qusbas S NrmSGrp G X V V / G ~ QG S = Base H
15 14 3 eqtr4di S NrmSGrp G X V V / G ~ QG S = B
16 6 15 eleqtrd S NrmSGrp G X V X G ~ QG S B