Metamath Proof Explorer


Theorem qusadd

Description: Value of the group operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015)

Ref Expression
Hypotheses qusgrp.h H=G/𝑠G~QGS
qusadd.v V=BaseG
qusadd.p +˙=+G
qusadd.a ˙=+H
Assertion qusadd SNrmSGrpGXVYVXG~QGS˙YG~QGS=X+˙YG~QGS

Proof

Step Hyp Ref Expression
1 qusgrp.h H=G/𝑠G~QGS
2 qusadd.v V=BaseG
3 qusadd.p +˙=+G
4 qusadd.a ˙=+H
5 1 a1i SNrmSGrpGH=G/𝑠G~QGS
6 2 a1i SNrmSGrpGV=BaseG
7 nsgsubg SNrmSGrpGSSubGrpG
8 eqid G~QGS=G~QGS
9 2 8 eqger SSubGrpGG~QGSErV
10 7 9 syl SNrmSGrpGG~QGSErV
11 subgrcl SSubGrpGGGrp
12 7 11 syl SNrmSGrpGGGrp
13 2 8 3 eqgcpbl SNrmSGrpGaG~QGSpbG~QGSqa+˙bG~QGSp+˙q
14 2 3 grpcl GGrppVqVp+˙qV
15 14 3expb GGrppVqVp+˙qV
16 12 15 sylan SNrmSGrpGpVqVp+˙qV
17 5 6 10 12 13 16 3 4 qusaddval SNrmSGrpGXVYVXG~QGS˙YG~QGS=X+˙YG~QGS