| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqger.x |
|
| 2 |
|
eqger.r |
|
| 3 |
2
|
releqg |
|
| 4 |
3
|
a1i |
|
| 5 |
|
subgrcl |
|
| 6 |
1
|
subgss |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
1 7 8 2
|
eqgval |
|
| 10 |
5 6 9
|
syl2anc |
|
| 11 |
10
|
biimpa |
|
| 12 |
11
|
simp2d |
|
| 13 |
11
|
simp1d |
|
| 14 |
5
|
adantr |
|
| 15 |
1 7 14 13
|
grpinvcld |
|
| 16 |
1 8 7
|
grpinvadd |
|
| 17 |
14 15 12 16
|
syl3anc |
|
| 18 |
1 7
|
grpinvinv |
|
| 19 |
14 13 18
|
syl2anc |
|
| 20 |
19
|
oveq2d |
|
| 21 |
17 20
|
eqtrd |
|
| 22 |
11
|
simp3d |
|
| 23 |
7
|
subginvcl |
|
| 24 |
22 23
|
syldan |
|
| 25 |
21 24
|
eqeltrrd |
|
| 26 |
6
|
adantr |
|
| 27 |
1 7 8 2
|
eqgval |
|
| 28 |
14 26 27
|
syl2anc |
|
| 29 |
12 13 25 28
|
mpbir3and |
|
| 30 |
13
|
adantrr |
|
| 31 |
1 7 8 2
|
eqgval |
|
| 32 |
5 6 31
|
syl2anc |
|
| 33 |
32
|
biimpa |
|
| 34 |
33
|
adantrl |
|
| 35 |
34
|
simp2d |
|
| 36 |
5
|
adantr |
|
| 37 |
1 7 36 30
|
grpinvcld |
|
| 38 |
12
|
adantrr |
|
| 39 |
1 7 36 38
|
grpinvcld |
|
| 40 |
1 8 36 39 35
|
grpcld |
|
| 41 |
1 8 36 37 38 40
|
grpassd |
|
| 42 |
|
eqid |
|
| 43 |
1 8 42 7
|
grprinv |
|
| 44 |
36 38 43
|
syl2anc |
|
| 45 |
44
|
oveq1d |
|
| 46 |
1 8 36 38 39 35
|
grpassd |
|
| 47 |
1 8 42 36 35
|
grplidd |
|
| 48 |
45 46 47
|
3eqtr3d |
|
| 49 |
48
|
oveq2d |
|
| 50 |
41 49
|
eqtrd |
|
| 51 |
|
simpl |
|
| 52 |
22
|
adantrr |
|
| 53 |
34
|
simp3d |
|
| 54 |
8
|
subgcl |
|
| 55 |
51 52 53 54
|
syl3anc |
|
| 56 |
50 55
|
eqeltrrd |
|
| 57 |
6
|
adantr |
|
| 58 |
1 7 8 2
|
eqgval |
|
| 59 |
36 57 58
|
syl2anc |
|
| 60 |
30 35 56 59
|
mpbir3and |
|
| 61 |
1 8 42 7
|
grplinv |
|
| 62 |
5 61
|
sylan |
|
| 63 |
42
|
subg0cl |
|
| 64 |
63
|
adantr |
|
| 65 |
62 64
|
eqeltrd |
|
| 66 |
65
|
ex |
|
| 67 |
66
|
pm4.71rd |
|
| 68 |
1 7 8 2
|
eqgval |
|
| 69 |
5 6 68
|
syl2anc |
|
| 70 |
|
df-3an |
|
| 71 |
|
anidm |
|
| 72 |
71
|
anbi2ci |
|
| 73 |
70 72
|
bitri |
|
| 74 |
69 73
|
bitrdi |
|
| 75 |
67 74
|
bitr4d |
|
| 76 |
4 29 60 75
|
iserd |
|