Metamath Proof Explorer


Theorem subginvcl

Description: The inverse of an element is closed in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypothesis subginvcl.i I=invgG
Assertion subginvcl SSubGrpGXSIXS

Proof

Step Hyp Ref Expression
1 subginvcl.i I=invgG
2 eqid G𝑠S=G𝑠S
3 2 subggrp SSubGrpGG𝑠SGrp
4 simpr SSubGrpGXSXS
5 2 subgbas SSubGrpGS=BaseG𝑠S
6 5 adantr SSubGrpGXSS=BaseG𝑠S
7 4 6 eleqtrd SSubGrpGXSXBaseG𝑠S
8 eqid BaseG𝑠S=BaseG𝑠S
9 eqid invgG𝑠S=invgG𝑠S
10 8 9 grpinvcl G𝑠SGrpXBaseG𝑠SinvgG𝑠SXBaseG𝑠S
11 3 7 10 syl2an2r SSubGrpGXSinvgG𝑠SXBaseG𝑠S
12 2 1 9 subginv SSubGrpGXSIX=invgG𝑠SX
13 11 12 6 3eltr4d SSubGrpGXSIXS