Description: The inverse of an element is closed in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subginvcl.i | |
|
Assertion | subginvcl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subginvcl.i | |
|
2 | eqid | |
|
3 | 2 | subggrp | |
4 | simpr | |
|
5 | 2 | subgbas | |
6 | 5 | adantr | |
7 | 4 6 | eleqtrd | |
8 | eqid | |
|
9 | eqid | |
|
10 | 8 9 | grpinvcl | |
11 | 3 7 10 | syl2an2r | |
12 | 2 1 9 | subginv | |
13 | 11 12 6 | 3eltr4d | |