Metamath Proof Explorer


Theorem subginv

Description: The inverse of an element in a subgroup is the same as the inverse in the larger group. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses subg0.h H = G 𝑠 S
subginv.i I = inv g G
subginv.j J = inv g H
Assertion subginv S SubGrp G X S I X = J X

Proof

Step Hyp Ref Expression
1 subg0.h H = G 𝑠 S
2 subginv.i I = inv g G
3 subginv.j J = inv g H
4 1 subggrp S SubGrp G H Grp
5 1 subgbas S SubGrp G S = Base H
6 5 eleq2d S SubGrp G X S X Base H
7 6 biimpa S SubGrp G X S X Base H
8 eqid Base H = Base H
9 eqid + H = + H
10 eqid 0 H = 0 H
11 8 9 10 3 grprinv H Grp X Base H X + H J X = 0 H
12 4 7 11 syl2an2r S SubGrp G X S X + H J X = 0 H
13 eqid + G = + G
14 1 13 ressplusg S SubGrp G + G = + H
15 14 adantr S SubGrp G X S + G = + H
16 15 oveqd S SubGrp G X S X + G J X = X + H J X
17 eqid 0 G = 0 G
18 1 17 subg0 S SubGrp G 0 G = 0 H
19 18 adantr S SubGrp G X S 0 G = 0 H
20 12 16 19 3eqtr4d S SubGrp G X S X + G J X = 0 G
21 subgrcl S SubGrp G G Grp
22 21 adantr S SubGrp G X S G Grp
23 eqid Base G = Base G
24 23 subgss S SubGrp G S Base G
25 24 sselda S SubGrp G X S X Base G
26 8 3 grpinvcl H Grp X Base H J X Base H
27 26 ex H Grp X Base H J X Base H
28 4 27 syl S SubGrp G X Base H J X Base H
29 5 eleq2d S SubGrp G J X S J X Base H
30 28 6 29 3imtr4d S SubGrp G X S J X S
31 30 imp S SubGrp G X S J X S
32 24 sselda S SubGrp G J X S J X Base G
33 31 32 syldan S SubGrp G X S J X Base G
34 23 13 17 2 grpinvid1 G Grp X Base G J X Base G I X = J X X + G J X = 0 G
35 22 25 33 34 syl3anc S SubGrp G X S I X = J X X + G J X = 0 G
36 20 35 mpbird S SubGrp G X S I X = J X