| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subg0.h |
|
| 2 |
|
subg0.i |
|
| 3 |
|
eqid |
|
| 4 |
1 3
|
ressplusg |
|
| 5 |
4
|
oveqd |
|
| 6 |
1
|
subggrp |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
7 8
|
grpidcl |
|
| 10 |
6 9
|
syl |
|
| 11 |
|
eqid |
|
| 12 |
7 11 8
|
grplid |
|
| 13 |
6 10 12
|
syl2anc |
|
| 14 |
5 13
|
eqtrd |
|
| 15 |
|
subgrcl |
|
| 16 |
|
eqid |
|
| 17 |
16
|
subgss |
|
| 18 |
1
|
subgbas |
|
| 19 |
10 18
|
eleqtrrd |
|
| 20 |
17 19
|
sseldd |
|
| 21 |
16 3 2
|
grpid |
|
| 22 |
15 20 21
|
syl2anc |
|
| 23 |
14 22
|
mpbid |
|