Metamath Proof Explorer


Theorem fmptd

Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Mario Carneiro, 13-Jan-2013)

Ref Expression
Hypotheses fmptd.1
|- ( ( ph /\ x e. A ) -> B e. C )
fmptd.2
|- F = ( x e. A |-> B )
Assertion fmptd
|- ( ph -> F : A --> C )

Proof

Step Hyp Ref Expression
1 fmptd.1
 |-  ( ( ph /\ x e. A ) -> B e. C )
2 fmptd.2
 |-  F = ( x e. A |-> B )
3 1 ralrimiva
 |-  ( ph -> A. x e. A B e. C )
4 2 fmpt
 |-  ( A. x e. A B e. C <-> F : A --> C )
5 3 4 sylib
 |-  ( ph -> F : A --> C )