Metamath Proof Explorer


Theorem fmptd

Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Mario Carneiro, 13-Jan-2013)

Ref Expression
Hypotheses fmptd.1 ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )
fmptd.2 𝐹 = ( 𝑥𝐴𝐵 )
Assertion fmptd ( 𝜑𝐹 : 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 fmptd.1 ( ( 𝜑𝑥𝐴 ) → 𝐵𝐶 )
2 fmptd.2 𝐹 = ( 𝑥𝐴𝐵 )
3 1 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 𝐵𝐶 )
4 2 fmpt ( ∀ 𝑥𝐴 𝐵𝐶𝐹 : 𝐴𝐶 )
5 3 4 sylib ( 𝜑𝐹 : 𝐴𝐶 )