Metamath Proof Explorer
Description: Domain and codomain of the mapping operation; deduction form.
(Contributed by Mario Carneiro, 13-Jan-2013)
|
|
Ref |
Expression |
|
Hypotheses |
fmptd.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐶 ) |
|
|
fmptd.2 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
|
Assertion |
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
fmptd.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝐶 ) |
2 |
|
fmptd.2 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
3 |
1
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ) |
4 |
2
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ 𝐹 : 𝐴 ⟶ 𝐶 ) |
5 |
3 4
|
sylib |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐶 ) |