| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qusring.u |
|
| 2 |
|
qusring.i |
|
| 3 |
|
qusrhm.x |
|
| 4 |
|
qusrhm.f |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
|
simpl |
|
| 10 |
1 2
|
qusring |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
11 12 13 2
|
2idlval |
|
| 15 |
14
|
elin2 |
|
| 16 |
15
|
simplbi |
|
| 17 |
11
|
lidlsubg |
|
| 18 |
16 17
|
sylan2 |
|
| 19 |
|
eqid |
|
| 20 |
3 19
|
eqger |
|
| 21 |
18 20
|
syl |
|
| 22 |
3
|
fvexi |
|
| 23 |
22
|
a1i |
|
| 24 |
21 23 4
|
divsfval |
|
| 25 |
1 2 5
|
qus1 |
|
| 26 |
25
|
simprd |
|
| 27 |
24 26
|
eqtrd |
|
| 28 |
1
|
a1i |
|
| 29 |
3
|
a1i |
|
| 30 |
3 19 2 7
|
2idlcpbl |
|
| 31 |
3 7
|
ringcl |
|
| 32 |
31
|
3expb |
|
| 33 |
32
|
adantlr |
|
| 34 |
33
|
caovclg |
|
| 35 |
28 29 21 9 30 34 7 8
|
qusmulval |
|
| 36 |
35
|
3expb |
|
| 37 |
21
|
adantr |
|
| 38 |
22
|
a1i |
|
| 39 |
37 38 4
|
divsfval |
|
| 40 |
37 38 4
|
divsfval |
|
| 41 |
39 40
|
oveq12d |
|
| 42 |
37 38 4
|
divsfval |
|
| 43 |
36 41 42
|
3eqtr4rd |
|
| 44 |
|
ringabl |
|
| 45 |
44
|
adantr |
|
| 46 |
|
ablnsg |
|
| 47 |
45 46
|
syl |
|
| 48 |
18 47
|
eleqtrrd |
|
| 49 |
3 1 4
|
qusghm |
|
| 50 |
48 49
|
syl |
|
| 51 |
3 5 6 7 8 9 10 27 43 50
|
isrhm2d |
|