Metamath Proof Explorer


Theorem divsfval

Description: Value of the function in qusval . (Contributed by Mario Carneiro, 24-Feb-2015) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypotheses ercpbl.r φ ˙ Er V
ercpbl.v φ V V
ercpbl.f F = x V x ˙
Assertion divsfval φ F A = A ˙

Proof

Step Hyp Ref Expression
1 ercpbl.r φ ˙ Er V
2 ercpbl.v φ V V
3 ercpbl.f F = x V x ˙
4 1 ecss φ A ˙ V
5 2 4 ssexd φ A ˙ V
6 eceq1 x = A x ˙ = A ˙
7 6 3 fvmptg A V A ˙ V F A = A ˙
8 5 7 sylan2 A V φ F A = A ˙
9 8 expcom φ A V F A = A ˙
10 3 dmeqi dom F = dom x V x ˙
11 1 ecss φ x ˙ V
12 2 11 ssexd φ x ˙ V
13 12 ralrimivw φ x V x ˙ V
14 dmmptg x V x ˙ V dom x V x ˙ = V
15 13 14 syl φ dom x V x ˙ = V
16 10 15 syl5eq φ dom F = V
17 16 eleq2d φ A dom F A V
18 17 notbid φ ¬ A dom F ¬ A V
19 ndmfv ¬ A dom F F A =
20 18 19 syl6bir φ ¬ A V F A =
21 ecdmn0 A dom ˙ A ˙
22 erdm ˙ Er V dom ˙ = V
23 1 22 syl φ dom ˙ = V
24 23 eleq2d φ A dom ˙ A V
25 24 biimpd φ A dom ˙ A V
26 21 25 syl5bir φ A ˙ A V
27 26 necon1bd φ ¬ A V A ˙ =
28 20 27 jcad φ ¬ A V F A = A ˙ =
29 eqtr3 F A = A ˙ = F A = A ˙
30 28 29 syl6 φ ¬ A V F A = A ˙
31 9 30 pm2.61d φ F A = A ˙