Metamath Proof Explorer


Theorem divsfval

Description: Value of the function in qusval . (Contributed by Mario Carneiro, 24-Feb-2015) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypotheses ercpbl.r ( 𝜑 Er 𝑉 )
ercpbl.v ( 𝜑𝑉 ∈ V )
ercpbl.f 𝐹 = ( 𝑥𝑉 ↦ [ 𝑥 ] )
Assertion divsfval ( 𝜑 → ( 𝐹𝐴 ) = [ 𝐴 ] )

Proof

Step Hyp Ref Expression
1 ercpbl.r ( 𝜑 Er 𝑉 )
2 ercpbl.v ( 𝜑𝑉 ∈ V )
3 ercpbl.f 𝐹 = ( 𝑥𝑉 ↦ [ 𝑥 ] )
4 1 ecss ( 𝜑 → [ 𝐴 ] 𝑉 )
5 2 4 ssexd ( 𝜑 → [ 𝐴 ] ∈ V )
6 eceq1 ( 𝑥 = 𝐴 → [ 𝑥 ] = [ 𝐴 ] )
7 6 3 fvmptg ( ( 𝐴𝑉 ∧ [ 𝐴 ] ∈ V ) → ( 𝐹𝐴 ) = [ 𝐴 ] )
8 5 7 sylan2 ( ( 𝐴𝑉𝜑 ) → ( 𝐹𝐴 ) = [ 𝐴 ] )
9 8 expcom ( 𝜑 → ( 𝐴𝑉 → ( 𝐹𝐴 ) = [ 𝐴 ] ) )
10 3 dmeqi dom 𝐹 = dom ( 𝑥𝑉 ↦ [ 𝑥 ] )
11 1 ecss ( 𝜑 → [ 𝑥 ] 𝑉 )
12 2 11 ssexd ( 𝜑 → [ 𝑥 ] ∈ V )
13 12 ralrimivw ( 𝜑 → ∀ 𝑥𝑉 [ 𝑥 ] ∈ V )
14 dmmptg ( ∀ 𝑥𝑉 [ 𝑥 ] ∈ V → dom ( 𝑥𝑉 ↦ [ 𝑥 ] ) = 𝑉 )
15 13 14 syl ( 𝜑 → dom ( 𝑥𝑉 ↦ [ 𝑥 ] ) = 𝑉 )
16 10 15 syl5eq ( 𝜑 → dom 𝐹 = 𝑉 )
17 16 eleq2d ( 𝜑 → ( 𝐴 ∈ dom 𝐹𝐴𝑉 ) )
18 17 notbid ( 𝜑 → ( ¬ 𝐴 ∈ dom 𝐹 ↔ ¬ 𝐴𝑉 ) )
19 ndmfv ( ¬ 𝐴 ∈ dom 𝐹 → ( 𝐹𝐴 ) = ∅ )
20 18 19 syl6bir ( 𝜑 → ( ¬ 𝐴𝑉 → ( 𝐹𝐴 ) = ∅ ) )
21 ecdmn0 ( 𝐴 ∈ dom ↔ [ 𝐴 ] ≠ ∅ )
22 erdm ( Er 𝑉 → dom = 𝑉 )
23 1 22 syl ( 𝜑 → dom = 𝑉 )
24 23 eleq2d ( 𝜑 → ( 𝐴 ∈ dom 𝐴𝑉 ) )
25 24 biimpd ( 𝜑 → ( 𝐴 ∈ dom 𝐴𝑉 ) )
26 21 25 syl5bir ( 𝜑 → ( [ 𝐴 ] ≠ ∅ → 𝐴𝑉 ) )
27 26 necon1bd ( 𝜑 → ( ¬ 𝐴𝑉 → [ 𝐴 ] = ∅ ) )
28 20 27 jcad ( 𝜑 → ( ¬ 𝐴𝑉 → ( ( 𝐹𝐴 ) = ∅ ∧ [ 𝐴 ] = ∅ ) ) )
29 eqtr3 ( ( ( 𝐹𝐴 ) = ∅ ∧ [ 𝐴 ] = ∅ ) → ( 𝐹𝐴 ) = [ 𝐴 ] )
30 28 29 syl6 ( 𝜑 → ( ¬ 𝐴𝑉 → ( 𝐹𝐴 ) = [ 𝐴 ] ) )
31 9 30 pm2.61d ( 𝜑 → ( 𝐹𝐴 ) = [ 𝐴 ] )