Metamath Proof Explorer


Theorem qusval

Description: Value of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses qusval.u ( 𝜑𝑈 = ( 𝑅 /s ) )
qusval.v ( 𝜑𝑉 = ( Base ‘ 𝑅 ) )
qusval.f 𝐹 = ( 𝑥𝑉 ↦ [ 𝑥 ] )
qusval.e ( 𝜑𝑊 )
qusval.r ( 𝜑𝑅𝑍 )
Assertion qusval ( 𝜑𝑈 = ( 𝐹s 𝑅 ) )

Proof

Step Hyp Ref Expression
1 qusval.u ( 𝜑𝑈 = ( 𝑅 /s ) )
2 qusval.v ( 𝜑𝑉 = ( Base ‘ 𝑅 ) )
3 qusval.f 𝐹 = ( 𝑥𝑉 ↦ [ 𝑥 ] )
4 qusval.e ( 𝜑𝑊 )
5 qusval.r ( 𝜑𝑅𝑍 )
6 df-qus /s = ( 𝑟 ∈ V , 𝑒 ∈ V ↦ ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ [ 𝑥 ] 𝑒 ) “s 𝑟 ) )
7 6 a1i ( 𝜑 → /s = ( 𝑟 ∈ V , 𝑒 ∈ V ↦ ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ [ 𝑥 ] 𝑒 ) “s 𝑟 ) ) )
8 simprl ( ( 𝜑 ∧ ( 𝑟 = 𝑅𝑒 = ) ) → 𝑟 = 𝑅 )
9 8 fveq2d ( ( 𝜑 ∧ ( 𝑟 = 𝑅𝑒 = ) ) → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) )
10 2 adantr ( ( 𝜑 ∧ ( 𝑟 = 𝑅𝑒 = ) ) → 𝑉 = ( Base ‘ 𝑅 ) )
11 9 10 eqtr4d ( ( 𝜑 ∧ ( 𝑟 = 𝑅𝑒 = ) ) → ( Base ‘ 𝑟 ) = 𝑉 )
12 eceq2 ( 𝑒 = → [ 𝑥 ] 𝑒 = [ 𝑥 ] )
13 12 ad2antll ( ( 𝜑 ∧ ( 𝑟 = 𝑅𝑒 = ) ) → [ 𝑥 ] 𝑒 = [ 𝑥 ] )
14 11 13 mpteq12dv ( ( 𝜑 ∧ ( 𝑟 = 𝑅𝑒 = ) ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ [ 𝑥 ] 𝑒 ) = ( 𝑥𝑉 ↦ [ 𝑥 ] ) )
15 14 3 eqtr4di ( ( 𝜑 ∧ ( 𝑟 = 𝑅𝑒 = ) ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ [ 𝑥 ] 𝑒 ) = 𝐹 )
16 15 8 oveq12d ( ( 𝜑 ∧ ( 𝑟 = 𝑅𝑒 = ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ [ 𝑥 ] 𝑒 ) “s 𝑟 ) = ( 𝐹s 𝑅 ) )
17 5 elexd ( 𝜑𝑅 ∈ V )
18 4 elexd ( 𝜑 ∈ V )
19 ovexd ( 𝜑 → ( 𝐹s 𝑅 ) ∈ V )
20 7 16 17 18 19 ovmpod ( 𝜑 → ( 𝑅 /s ) = ( 𝐹s 𝑅 ) )
21 1 20 eqtrd ( 𝜑𝑈 = ( 𝐹s 𝑅 ) )