Metamath Proof Explorer


Theorem qusval

Description: Value of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses qusval.u
|- ( ph -> U = ( R /s .~ ) )
qusval.v
|- ( ph -> V = ( Base ` R ) )
qusval.f
|- F = ( x e. V |-> [ x ] .~ )
qusval.e
|- ( ph -> .~ e. W )
qusval.r
|- ( ph -> R e. Z )
Assertion qusval
|- ( ph -> U = ( F "s R ) )

Proof

Step Hyp Ref Expression
1 qusval.u
 |-  ( ph -> U = ( R /s .~ ) )
2 qusval.v
 |-  ( ph -> V = ( Base ` R ) )
3 qusval.f
 |-  F = ( x e. V |-> [ x ] .~ )
4 qusval.e
 |-  ( ph -> .~ e. W )
5 qusval.r
 |-  ( ph -> R e. Z )
6 df-qus
 |-  /s = ( r e. _V , e e. _V |-> ( ( x e. ( Base ` r ) |-> [ x ] e ) "s r ) )
7 6 a1i
 |-  ( ph -> /s = ( r e. _V , e e. _V |-> ( ( x e. ( Base ` r ) |-> [ x ] e ) "s r ) ) )
8 simprl
 |-  ( ( ph /\ ( r = R /\ e = .~ ) ) -> r = R )
9 8 fveq2d
 |-  ( ( ph /\ ( r = R /\ e = .~ ) ) -> ( Base ` r ) = ( Base ` R ) )
10 2 adantr
 |-  ( ( ph /\ ( r = R /\ e = .~ ) ) -> V = ( Base ` R ) )
11 9 10 eqtr4d
 |-  ( ( ph /\ ( r = R /\ e = .~ ) ) -> ( Base ` r ) = V )
12 eceq2
 |-  ( e = .~ -> [ x ] e = [ x ] .~ )
13 12 ad2antll
 |-  ( ( ph /\ ( r = R /\ e = .~ ) ) -> [ x ] e = [ x ] .~ )
14 11 13 mpteq12dv
 |-  ( ( ph /\ ( r = R /\ e = .~ ) ) -> ( x e. ( Base ` r ) |-> [ x ] e ) = ( x e. V |-> [ x ] .~ ) )
15 14 3 eqtr4di
 |-  ( ( ph /\ ( r = R /\ e = .~ ) ) -> ( x e. ( Base ` r ) |-> [ x ] e ) = F )
16 15 8 oveq12d
 |-  ( ( ph /\ ( r = R /\ e = .~ ) ) -> ( ( x e. ( Base ` r ) |-> [ x ] e ) "s r ) = ( F "s R ) )
17 5 elexd
 |-  ( ph -> R e. _V )
18 4 elexd
 |-  ( ph -> .~ e. _V )
19 ovexd
 |-  ( ph -> ( F "s R ) e. _V )
20 7 16 17 18 19 ovmpod
 |-  ( ph -> ( R /s .~ ) = ( F "s R ) )
21 1 20 eqtrd
 |-  ( ph -> U = ( F "s R ) )