| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qusval.u |
|- ( ph -> U = ( R /s .~ ) ) |
| 2 |
|
qusval.v |
|- ( ph -> V = ( Base ` R ) ) |
| 3 |
|
qusval.f |
|- F = ( x e. V |-> [ x ] .~ ) |
| 4 |
|
qusval.e |
|- ( ph -> .~ e. W ) |
| 5 |
|
qusval.r |
|- ( ph -> R e. Z ) |
| 6 |
|
df-qus |
|- /s = ( r e. _V , e e. _V |-> ( ( x e. ( Base ` r ) |-> [ x ] e ) "s r ) ) |
| 7 |
6
|
a1i |
|- ( ph -> /s = ( r e. _V , e e. _V |-> ( ( x e. ( Base ` r ) |-> [ x ] e ) "s r ) ) ) |
| 8 |
|
simprl |
|- ( ( ph /\ ( r = R /\ e = .~ ) ) -> r = R ) |
| 9 |
8
|
fveq2d |
|- ( ( ph /\ ( r = R /\ e = .~ ) ) -> ( Base ` r ) = ( Base ` R ) ) |
| 10 |
2
|
adantr |
|- ( ( ph /\ ( r = R /\ e = .~ ) ) -> V = ( Base ` R ) ) |
| 11 |
9 10
|
eqtr4d |
|- ( ( ph /\ ( r = R /\ e = .~ ) ) -> ( Base ` r ) = V ) |
| 12 |
|
eceq2 |
|- ( e = .~ -> [ x ] e = [ x ] .~ ) |
| 13 |
12
|
ad2antll |
|- ( ( ph /\ ( r = R /\ e = .~ ) ) -> [ x ] e = [ x ] .~ ) |
| 14 |
11 13
|
mpteq12dv |
|- ( ( ph /\ ( r = R /\ e = .~ ) ) -> ( x e. ( Base ` r ) |-> [ x ] e ) = ( x e. V |-> [ x ] .~ ) ) |
| 15 |
14 3
|
eqtr4di |
|- ( ( ph /\ ( r = R /\ e = .~ ) ) -> ( x e. ( Base ` r ) |-> [ x ] e ) = F ) |
| 16 |
15 8
|
oveq12d |
|- ( ( ph /\ ( r = R /\ e = .~ ) ) -> ( ( x e. ( Base ` r ) |-> [ x ] e ) "s r ) = ( F "s R ) ) |
| 17 |
5
|
elexd |
|- ( ph -> R e. _V ) |
| 18 |
4
|
elexd |
|- ( ph -> .~ e. _V ) |
| 19 |
|
ovexd |
|- ( ph -> ( F "s R ) e. _V ) |
| 20 |
7 16 17 18 19
|
ovmpod |
|- ( ph -> ( R /s .~ ) = ( F "s R ) ) |
| 21 |
1 20
|
eqtrd |
|- ( ph -> U = ( F "s R ) ) |