Metamath Proof Explorer


Theorem qusval

Description: Value of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses qusval.u φU=R/𝑠˙
qusval.v φV=BaseR
qusval.f F=xVx˙
qusval.e φ˙W
qusval.r φRZ
Assertion qusval φU=F𝑠R

Proof

Step Hyp Ref Expression
1 qusval.u φU=R/𝑠˙
2 qusval.v φV=BaseR
3 qusval.f F=xVx˙
4 qusval.e φ˙W
5 qusval.r φRZ
6 df-qus /𝑠=rV,eVxBaserxe𝑠r
7 6 a1i φ/𝑠=rV,eVxBaserxe𝑠r
8 simprl φr=Re=˙r=R
9 8 fveq2d φr=Re=˙Baser=BaseR
10 2 adantr φr=Re=˙V=BaseR
11 9 10 eqtr4d φr=Re=˙Baser=V
12 eceq2 e=˙xe=x˙
13 12 ad2antll φr=Re=˙xe=x˙
14 11 13 mpteq12dv φr=Re=˙xBaserxe=xVx˙
15 14 3 eqtr4di φr=Re=˙xBaserxe=F
16 15 8 oveq12d φr=Re=˙xBaserxe𝑠r=F𝑠R
17 5 elexd φRV
18 4 elexd φ˙V
19 ovexd φF𝑠RV
20 7 16 17 18 19 ovmpod φR/𝑠˙=F𝑠R
21 1 20 eqtrd φU=F𝑠R