Metamath Proof Explorer


Theorem quslem

Description: The function in qusval is a surjection onto a quotient set. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses qusval.u φU=R/𝑠˙
qusval.v φV=BaseR
qusval.f F=xVx˙
qusval.e φ˙W
qusval.r φRZ
Assertion quslem φF:VontoV/˙

Proof

Step Hyp Ref Expression
1 qusval.u φU=R/𝑠˙
2 qusval.v φV=BaseR
3 qusval.f F=xVx˙
4 qusval.e φ˙W
5 qusval.r φRZ
6 ecexg ˙Wx˙V
7 4 6 syl φx˙V
8 7 ralrimivw φxVx˙V
9 3 fnmpt xVx˙VFFnV
10 8 9 syl φFFnV
11 dffn4 FFnVF:VontoranF
12 10 11 sylib φF:VontoranF
13 3 rnmpt ranF=y|xVy=x˙
14 df-qs V/˙=y|xVy=x˙
15 13 14 eqtr4i ranF=V/˙
16 foeq3 ranF=V/˙F:VontoranFF:VontoV/˙
17 15 16 ax-mp F:VontoranFF:VontoV/˙
18 12 17 sylib φF:VontoV/˙