| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qusval.u |
⊢ ( 𝜑 → 𝑈 = ( 𝑅 /s ∼ ) ) |
| 2 |
|
qusval.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) |
| 3 |
|
qusval.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) |
| 4 |
|
qusval.e |
⊢ ( 𝜑 → ∼ ∈ 𝑊 ) |
| 5 |
|
qusval.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) |
| 6 |
|
ecexg |
⊢ ( ∼ ∈ 𝑊 → [ 𝑥 ] ∼ ∈ V ) |
| 7 |
4 6
|
syl |
⊢ ( 𝜑 → [ 𝑥 ] ∼ ∈ V ) |
| 8 |
7
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑉 [ 𝑥 ] ∼ ∈ V ) |
| 9 |
3
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ 𝑉 [ 𝑥 ] ∼ ∈ V → 𝐹 Fn 𝑉 ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → 𝐹 Fn 𝑉 ) |
| 11 |
|
dffn4 |
⊢ ( 𝐹 Fn 𝑉 ↔ 𝐹 : 𝑉 –onto→ ran 𝐹 ) |
| 12 |
10 11
|
sylib |
⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ ran 𝐹 ) |
| 13 |
3
|
rnmpt |
⊢ ran 𝐹 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝑉 𝑦 = [ 𝑥 ] ∼ } |
| 14 |
|
df-qs |
⊢ ( 𝑉 / ∼ ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝑉 𝑦 = [ 𝑥 ] ∼ } |
| 15 |
13 14
|
eqtr4i |
⊢ ran 𝐹 = ( 𝑉 / ∼ ) |
| 16 |
|
foeq3 |
⊢ ( ran 𝐹 = ( 𝑉 / ∼ ) → ( 𝐹 : 𝑉 –onto→ ran 𝐹 ↔ 𝐹 : 𝑉 –onto→ ( 𝑉 / ∼ ) ) ) |
| 17 |
15 16
|
ax-mp |
⊢ ( 𝐹 : 𝑉 –onto→ ran 𝐹 ↔ 𝐹 : 𝑉 –onto→ ( 𝑉 / ∼ ) ) |
| 18 |
12 17
|
sylib |
⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ ( 𝑉 / ∼ ) ) |