Metamath Proof Explorer


Theorem rnmpt

Description: The range of a function in maps-to notation. (Contributed by Scott Fenton, 21-Mar-2011) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypothesis rnmpt.1 𝐹 = ( 𝑥𝐴𝐵 )
Assertion rnmpt ran 𝐹 = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 }

Proof

Step Hyp Ref Expression
1 rnmpt.1 𝐹 = ( 𝑥𝐴𝐵 )
2 rnopab ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) } = { 𝑦 ∣ ∃ 𝑥 ( 𝑥𝐴𝑦 = 𝐵 ) }
3 df-mpt ( 𝑥𝐴𝐵 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) }
4 1 3 eqtri 𝐹 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) }
5 4 rneqi ran 𝐹 = ran { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) }
6 df-rex ( ∃ 𝑥𝐴 𝑦 = 𝐵 ↔ ∃ 𝑥 ( 𝑥𝐴𝑦 = 𝐵 ) )
7 6 abbii { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 } = { 𝑦 ∣ ∃ 𝑥 ( 𝑥𝐴𝑦 = 𝐵 ) }
8 2 5 7 3eqtr4i ran 𝐹 = { 𝑦 ∣ ∃ 𝑥𝐴 𝑦 = 𝐵 }