Description: The range of a function in maps-to notation. (Contributed by Scott Fenton, 21-Mar-2011) (Revised by Mario Carneiro, 31-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rnmpt.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
Assertion | rnmpt | ⊢ ran 𝐹 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmpt.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
2 | rnopab | ⊢ ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } | |
3 | df-mpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } | |
4 | 1 3 | eqtri | ⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } |
5 | 4 | rneqi | ⊢ ran 𝐹 = ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } |
6 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ) | |
7 | 6 | abbii | ⊢ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } |
8 | 2 5 7 | 3eqtr4i | ⊢ ran 𝐹 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = 𝐵 } |