Step |
Hyp |
Ref |
Expression |
1 |
|
ercpbl.r |
|- ( ph -> .~ Er V ) |
2 |
|
ercpbl.v |
|- ( ph -> V e. W ) |
3 |
|
ercpbl.f |
|- F = ( x e. V |-> [ x ] .~ ) |
4 |
1
|
ecss |
|- ( ph -> [ A ] .~ C_ V ) |
5 |
2 4
|
ssexd |
|- ( ph -> [ A ] .~ e. _V ) |
6 |
|
eceq1 |
|- ( x = A -> [ x ] .~ = [ A ] .~ ) |
7 |
6 3
|
fvmptg |
|- ( ( A e. V /\ [ A ] .~ e. _V ) -> ( F ` A ) = [ A ] .~ ) |
8 |
5 7
|
sylan2 |
|- ( ( A e. V /\ ph ) -> ( F ` A ) = [ A ] .~ ) |
9 |
8
|
expcom |
|- ( ph -> ( A e. V -> ( F ` A ) = [ A ] .~ ) ) |
10 |
3
|
dmeqi |
|- dom F = dom ( x e. V |-> [ x ] .~ ) |
11 |
1
|
ecss |
|- ( ph -> [ x ] .~ C_ V ) |
12 |
2 11
|
ssexd |
|- ( ph -> [ x ] .~ e. _V ) |
13 |
12
|
ralrimivw |
|- ( ph -> A. x e. V [ x ] .~ e. _V ) |
14 |
|
dmmptg |
|- ( A. x e. V [ x ] .~ e. _V -> dom ( x e. V |-> [ x ] .~ ) = V ) |
15 |
13 14
|
syl |
|- ( ph -> dom ( x e. V |-> [ x ] .~ ) = V ) |
16 |
10 15
|
eqtrid |
|- ( ph -> dom F = V ) |
17 |
16
|
eleq2d |
|- ( ph -> ( A e. dom F <-> A e. V ) ) |
18 |
17
|
notbid |
|- ( ph -> ( -. A e. dom F <-> -. A e. V ) ) |
19 |
|
ndmfv |
|- ( -. A e. dom F -> ( F ` A ) = (/) ) |
20 |
18 19
|
syl6bir |
|- ( ph -> ( -. A e. V -> ( F ` A ) = (/) ) ) |
21 |
|
ecdmn0 |
|- ( A e. dom .~ <-> [ A ] .~ =/= (/) ) |
22 |
|
erdm |
|- ( .~ Er V -> dom .~ = V ) |
23 |
1 22
|
syl |
|- ( ph -> dom .~ = V ) |
24 |
23
|
eleq2d |
|- ( ph -> ( A e. dom .~ <-> A e. V ) ) |
25 |
24
|
biimpd |
|- ( ph -> ( A e. dom .~ -> A e. V ) ) |
26 |
21 25
|
syl5bir |
|- ( ph -> ( [ A ] .~ =/= (/) -> A e. V ) ) |
27 |
26
|
necon1bd |
|- ( ph -> ( -. A e. V -> [ A ] .~ = (/) ) ) |
28 |
20 27
|
jcad |
|- ( ph -> ( -. A e. V -> ( ( F ` A ) = (/) /\ [ A ] .~ = (/) ) ) ) |
29 |
|
eqtr3 |
|- ( ( ( F ` A ) = (/) /\ [ A ] .~ = (/) ) -> ( F ` A ) = [ A ] .~ ) |
30 |
28 29
|
syl6 |
|- ( ph -> ( -. A e. V -> ( F ` A ) = [ A ] .~ ) ) |
31 |
9 30
|
pm2.61d |
|- ( ph -> ( F ` A ) = [ A ] .~ ) |