Metamath Proof Explorer


Theorem divsfval

Description: Value of the function in qusval . (Contributed by Mario Carneiro, 24-Feb-2015) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypotheses ercpbl.r
|- ( ph -> .~ Er V )
ercpbl.v
|- ( ph -> V e. _V )
ercpbl.f
|- F = ( x e. V |-> [ x ] .~ )
Assertion divsfval
|- ( ph -> ( F ` A ) = [ A ] .~ )

Proof

Step Hyp Ref Expression
1 ercpbl.r
 |-  ( ph -> .~ Er V )
2 ercpbl.v
 |-  ( ph -> V e. _V )
3 ercpbl.f
 |-  F = ( x e. V |-> [ x ] .~ )
4 1 ecss
 |-  ( ph -> [ A ] .~ C_ V )
5 2 4 ssexd
 |-  ( ph -> [ A ] .~ e. _V )
6 eceq1
 |-  ( x = A -> [ x ] .~ = [ A ] .~ )
7 6 3 fvmptg
 |-  ( ( A e. V /\ [ A ] .~ e. _V ) -> ( F ` A ) = [ A ] .~ )
8 5 7 sylan2
 |-  ( ( A e. V /\ ph ) -> ( F ` A ) = [ A ] .~ )
9 8 expcom
 |-  ( ph -> ( A e. V -> ( F ` A ) = [ A ] .~ ) )
10 3 dmeqi
 |-  dom F = dom ( x e. V |-> [ x ] .~ )
11 1 ecss
 |-  ( ph -> [ x ] .~ C_ V )
12 2 11 ssexd
 |-  ( ph -> [ x ] .~ e. _V )
13 12 ralrimivw
 |-  ( ph -> A. x e. V [ x ] .~ e. _V )
14 dmmptg
 |-  ( A. x e. V [ x ] .~ e. _V -> dom ( x e. V |-> [ x ] .~ ) = V )
15 13 14 syl
 |-  ( ph -> dom ( x e. V |-> [ x ] .~ ) = V )
16 10 15 syl5eq
 |-  ( ph -> dom F = V )
17 16 eleq2d
 |-  ( ph -> ( A e. dom F <-> A e. V ) )
18 17 notbid
 |-  ( ph -> ( -. A e. dom F <-> -. A e. V ) )
19 ndmfv
 |-  ( -. A e. dom F -> ( F ` A ) = (/) )
20 18 19 syl6bir
 |-  ( ph -> ( -. A e. V -> ( F ` A ) = (/) ) )
21 ecdmn0
 |-  ( A e. dom .~ <-> [ A ] .~ =/= (/) )
22 erdm
 |-  ( .~ Er V -> dom .~ = V )
23 1 22 syl
 |-  ( ph -> dom .~ = V )
24 23 eleq2d
 |-  ( ph -> ( A e. dom .~ <-> A e. V ) )
25 24 biimpd
 |-  ( ph -> ( A e. dom .~ -> A e. V ) )
26 21 25 syl5bir
 |-  ( ph -> ( [ A ] .~ =/= (/) -> A e. V ) )
27 26 necon1bd
 |-  ( ph -> ( -. A e. V -> [ A ] .~ = (/) ) )
28 20 27 jcad
 |-  ( ph -> ( -. A e. V -> ( ( F ` A ) = (/) /\ [ A ] .~ = (/) ) ) )
29 eqtr3
 |-  ( ( ( F ` A ) = (/) /\ [ A ] .~ = (/) ) -> ( F ` A ) = [ A ] .~ )
30 28 29 syl6
 |-  ( ph -> ( -. A e. V -> ( F ` A ) = [ A ] .~ ) )
31 9 30 pm2.61d
 |-  ( ph -> ( F ` A ) = [ A ] .~ )