Metamath Proof Explorer


Theorem dmmptg

Description: The domain of the mapping operation is the stated domain, if the function value is always a set. (Contributed by Mario Carneiro, 9-Feb-2013) (Revised by Mario Carneiro, 14-Sep-2013)

Ref Expression
Assertion dmmptg
|- ( A. x e. A B e. V -> dom ( x e. A |-> B ) = A )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( x e. A |-> B ) = ( x e. A |-> B )
2 1 dmmpt
 |-  dom ( x e. A |-> B ) = { x e. A | B e. _V }
3 elex
 |-  ( B e. V -> B e. _V )
4 3 ralimi
 |-  ( A. x e. A B e. V -> A. x e. A B e. _V )
5 rabid2
 |-  ( A = { x e. A | B e. _V } <-> A. x e. A B e. _V )
6 4 5 sylibr
 |-  ( A. x e. A B e. V -> A = { x e. A | B e. _V } )
7 2 6 eqtr4id
 |-  ( A. x e. A B e. V -> dom ( x e. A |-> B ) = A )