Metamath Proof Explorer


Theorem ecss

Description: An equivalence class is a subset of the domain. (Contributed by NM, 6-Aug-1995) (Revised by Mario Carneiro, 12-Aug-2015)

Ref Expression
Hypothesis ecss.1
|- ( ph -> R Er X )
Assertion ecss
|- ( ph -> [ A ] R C_ X )

Proof

Step Hyp Ref Expression
1 ecss.1
 |-  ( ph -> R Er X )
2 df-ec
 |-  [ A ] R = ( R " { A } )
3 imassrn
 |-  ( R " { A } ) C_ ran R
4 2 3 eqsstri
 |-  [ A ] R C_ ran R
5 errn
 |-  ( R Er X -> ran R = X )
6 1 5 syl
 |-  ( ph -> ran R = X )
7 4 6 sseqtrid
 |-  ( ph -> [ A ] R C_ X )