Database
BASIC ALGEBRAIC STRUCTURES
Rings
Definition and basic properties of unital rings
ringabl
Next ⟩
ringcmn
Metamath Proof Explorer
Ascii
Unicode
Theorem
ringabl
Description:
A ring is an Abelian group.
(Contributed by
NM
, 26-Aug-2011)
Ref
Expression
Assertion
ringabl
⊢
R
∈
Ring
→
R
∈
Abel
Proof
Step
Hyp
Ref
Expression
1
eqidd
⊢
R
∈
Ring
→
Base
R
=
Base
R
2
eqidd
⊢
R
∈
Ring
→
+
R
=
+
R
3
ringgrp
⊢
R
∈
Ring
→
R
∈
Grp
4
eqid
⊢
Base
R
=
Base
R
5
eqid
⊢
+
R
=
+
R
6
4
5
ringcom
⊢
R
∈
Ring
∧
x
∈
Base
R
∧
y
∈
Base
R
→
x
+
R
y
=
y
+
R
x
7
1
2
3
6
isabld
⊢
R
∈
Ring
→
R
∈
Abel