Metamath Proof Explorer


Theorem ringabl

Description: A ring is an Abelian group. (Contributed by NM, 26-Aug-2011)

Ref Expression
Assertion ringabl R Ring R Abel

Proof

Step Hyp Ref Expression
1 eqidd R Ring Base R = Base R
2 eqidd R Ring + R = + R
3 ringgrp R Ring R Grp
4 eqid Base R = Base R
5 eqid + R = + R
6 4 5 ringcom R Ring x Base R y Base R x + R y = y + R x
7 1 2 3 6 isabld R Ring R Abel