Description: A ring is an Abelian group. (Contributed by NM, 26-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | ringabl | |- ( R e. Ring -> R e. Abel ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd | |- ( R e. Ring -> ( Base ` R ) = ( Base ` R ) ) |
|
2 | eqidd | |- ( R e. Ring -> ( +g ` R ) = ( +g ` R ) ) |
|
3 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
4 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
5 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
6 | 4 5 | ringcom | |- ( ( R e. Ring /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( +g ` R ) y ) = ( y ( +g ` R ) x ) ) |
7 | 1 2 3 6 | isabld | |- ( R e. Ring -> R e. Abel ) |