Metamath Proof Explorer


Theorem ringabl

Description: A ring is an Abelian group. (Contributed by NM, 26-Aug-2011)

Ref Expression
Assertion ringabl
|- ( R e. Ring -> R e. Abel )

Proof

Step Hyp Ref Expression
1 eqidd
 |-  ( R e. Ring -> ( Base ` R ) = ( Base ` R ) )
2 eqidd
 |-  ( R e. Ring -> ( +g ` R ) = ( +g ` R ) )
3 ringgrp
 |-  ( R e. Ring -> R e. Grp )
4 eqid
 |-  ( Base ` R ) = ( Base ` R )
5 eqid
 |-  ( +g ` R ) = ( +g ` R )
6 4 5 ringcom
 |-  ( ( R e. Ring /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( +g ` R ) y ) = ( y ( +g ` R ) x ) )
7 1 2 3 6 isabld
 |-  ( R e. Ring -> R e. Abel )