Metamath Proof Explorer


Theorem ringabl

Description: A ring is an Abelian group. (Contributed by NM, 26-Aug-2011)

Ref Expression
Assertion ringabl ( 𝑅 ∈ Ring → 𝑅 ∈ Abel )

Proof

Step Hyp Ref Expression
1 eqidd ( 𝑅 ∈ Ring → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) )
2 eqidd ( 𝑅 ∈ Ring → ( +g𝑅 ) = ( +g𝑅 ) )
3 ringgrp ( 𝑅 ∈ Ring → 𝑅 ∈ Grp )
4 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
5 eqid ( +g𝑅 ) = ( +g𝑅 )
6 4 5 ringcom ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( +g𝑅 ) 𝑦 ) = ( 𝑦 ( +g𝑅 ) 𝑥 ) )
7 1 2 3 6 isabld ( 𝑅 ∈ Ring → 𝑅 ∈ Abel )