Metamath Proof Explorer


Theorem ringcmn

Description: A ring is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Assertion ringcmn ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd )

Proof

Step Hyp Ref Expression
1 ringabl ( 𝑅 ∈ Ring → 𝑅 ∈ Abel )
2 ablcmn ( 𝑅 ∈ Abel → 𝑅 ∈ CMnd )
3 1 2 syl ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd )