Database
BASIC ALGEBRAIC STRUCTURES
Rings
Definition and basic properties of unital rings
ringcmn
Next ⟩
ringpropd
Metamath Proof Explorer
Ascii
Unicode
Theorem
ringcmn
Description:
A ring is a commutative monoid.
(Contributed by
Mario Carneiro
, 7-Jan-2015)
Ref
Expression
Assertion
ringcmn
⊢
R
∈
Ring
→
R
∈
CMnd
Proof
Step
Hyp
Ref
Expression
1
ringabl
⊢
R
∈
Ring
→
R
∈
Abel
2
ablcmn
⊢
R
∈
Abel
→
R
∈
CMnd
3
1
2
syl
⊢
R
∈
Ring
→
R
∈
CMnd