Metamath Proof Explorer


Theorem ringcmn

Description: A ring is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Assertion ringcmn R Ring R CMnd

Proof

Step Hyp Ref Expression
1 ringabl R Ring R Abel
2 ablcmn R Abel R CMnd
3 1 2 syl R Ring R CMnd