Metamath Proof Explorer


Theorem ringabld

Description: A ring is an Abelian group. (Contributed by SN, 1-Jun-2024)

Ref Expression
Hypothesis ringabld.1 φ R Ring
Assertion ringabld φ R Abel

Proof

Step Hyp Ref Expression
1 ringabld.1 φ R Ring
2 ringabl R Ring R Abel
3 1 2 syl φ R Abel