Metamath Proof Explorer


Theorem ringabld

Description: A ring is an Abelian group. (Contributed by SN, 1-Jun-2024)

Ref Expression
Hypothesis ringabld.1 φRRing
Assertion ringabld φRAbel

Proof

Step Hyp Ref Expression
1 ringabld.1 φRRing
2 ringabl RRingRAbel
3 1 2 syl φRAbel