Description: A ring is an Abelian group. (Contributed by SN, 1-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ringabld.1 | |- ( ph -> R e. Ring ) |
|
Assertion | ringabld | |- ( ph -> R e. Abel ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringabld.1 | |- ( ph -> R e. Ring ) |
|
2 | ringabl | |- ( R e. Ring -> R e. Abel ) |
|
3 | 1 2 | syl | |- ( ph -> R e. Abel ) |