Description: A ring is an Abelian group. (Contributed by SN, 1-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ringabld.1 | |- ( ph -> R e. Ring ) |
|
| Assertion | ringabld | |- ( ph -> R e. Abel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringabld.1 | |- ( ph -> R e. Ring ) |
|
| 2 | ringabl | |- ( R e. Ring -> R e. Abel ) |
|
| 3 | 1 2 | syl | |- ( ph -> R e. Abel ) |