Metamath Proof Explorer


Theorem ringabld

Description: A ring is an Abelian group. (Contributed by SN, 1-Jun-2024)

Ref Expression
Hypothesis ringabld.1
|- ( ph -> R e. Ring )
Assertion ringabld
|- ( ph -> R e. Abel )

Proof

Step Hyp Ref Expression
1 ringabld.1
 |-  ( ph -> R e. Ring )
2 ringabl
 |-  ( R e. Ring -> R e. Abel )
3 1 2 syl
 |-  ( ph -> R e. Abel )