Metamath Proof Explorer


Theorem ringabld

Description: A ring is an Abelian group. (Contributed by SN, 1-Jun-2024)

Ref Expression
Hypothesis ringabld.1 ( 𝜑𝑅 ∈ Ring )
Assertion ringabld ( 𝜑𝑅 ∈ Abel )

Proof

Step Hyp Ref Expression
1 ringabld.1 ( 𝜑𝑅 ∈ Ring )
2 ringabl ( 𝑅 ∈ Ring → 𝑅 ∈ Abel )
3 1 2 syl ( 𝜑𝑅 ∈ Abel )