Metamath Proof Explorer


Theorem ringcmnd

Description: A ring is a commutative monoid. (Contributed by SN, 1-Jun-2024)

Ref Expression
Hypothesis ringabld.1 ( 𝜑𝑅 ∈ Ring )
Assertion ringcmnd ( 𝜑𝑅 ∈ CMnd )

Proof

Step Hyp Ref Expression
1 ringabld.1 ( 𝜑𝑅 ∈ Ring )
2 1 ringabld ( 𝜑𝑅 ∈ Abel )
3 2 ablcmnd ( 𝜑𝑅 ∈ CMnd )