Metamath Proof Explorer


Theorem ringcmnd

Description: A ring is a commutative monoid. (Contributed by SN, 1-Jun-2024)

Ref Expression
Hypothesis ringabld.1
|- ( ph -> R e. Ring )
Assertion ringcmnd
|- ( ph -> R e. CMnd )

Proof

Step Hyp Ref Expression
1 ringabld.1
 |-  ( ph -> R e. Ring )
2 1 ringabld
 |-  ( ph -> R e. Abel )
3 2 ablcmnd
 |-  ( ph -> R e. CMnd )