Metamath Proof Explorer


Theorem ringcmnd

Description: A ring is a commutative monoid. (Contributed by SN, 1-Jun-2024)

Ref Expression
Hypothesis ringabld.1 φ R Ring
Assertion ringcmnd φ R CMnd

Proof

Step Hyp Ref Expression
1 ringabld.1 φ R Ring
2 1 ringabld φ R Abel
3 2 ablcmnd φ R CMnd